Electron Scattering from a Polarized Deuterium Target at ${\it BLAST}$

R. Fatemi for the BLAST Collaboration Massachusetts Institute of Technology Cambridge, MA 02139, USA

The deuteron, the simplest nucleus, is an ideal arena for testing models of the nucleon-nucleon (NN) interaction and exploring the low-energy behavior of Quantum Chromodynamics (QCD). The Bates Large Acceptance Spectrometer (BLAST) Experiment¹ was designed to use both a tensor and vector polarized deuterium target² in combination with a longitudinally polarized electron beam for the simultaneous measurement of the vector (A_{ed}^V) and tensor (A_d^T) asymmetry. These asymmetries allow for the determination of the analyzing powers, T_{20} and T_{21} , and spin correlation coefficients, T_{10} and T_{11} , from which the elastic form factors can then be extracted.³

The average spin angle of the BLAST target for the 2004(2005) run was oriented at a $32^{o}(47^{o})$ with respect to the beamline. This unique configuration allows for the spin asymmetries:

$$A_{ed}^{V} = \sqrt{\frac{3}{2}} (\cos \theta_d T_{10} - \sqrt{2} \sin \theta_d \cos \phi_d T_{11})$$
 (1)

$$A_d^T = \frac{\sqrt{3}(\cos^2\theta_d - 1)}{\sqrt{8}} T_{20} - \frac{\sqrt{3}\sin 2\theta_d \cos \phi_d}{2} T_{21} + \frac{\sqrt{3}\sin^2\theta_d \cos 2\phi_d}{2} T_{22}$$
 (2)

to be measured simultaneously for the scenario where the Q^2 vector is parallel and perpendicular to the spin angle, and therefore permitting the independent determination of T_{20} , T_{21} , T_{10} and T_{11} from the same dataset.

Parameterization III by Abbott $et~al.^4$ of the world form factor data is used to subtract the small T_{22} contribution from the measured A_d^T and to determine the tensor polarization at the two lowest Q^2 bins. The BLAST analyzing powers T_{20} and T_{21} , plotted in Figs. 1 and 2,⁵ are in good agreement with the existing world data while providing comparable or improved statistical precision between 2 and 4 fm^{-1} .

Fig. 1. Measured tensor analyzing power T_{20} compared to existing data and theoretical calculations

Fig. 2. Measured tensor analyzing power T_{21} .

Analogously, the measured vector asymmetries allow for the first time the extraction of the spin coefficients T_{11} and T_{10} , shown in Fig. 3.⁶ While the statistical precision for the vector observables is lower than for T_{20} , the BLAST results are again in close agreement with calculations from the parameterizations of world data by Abbott⁴ and predictions from theory.

Fig. 3. Measured spin correlation coefficients T_{10} (neg) and T_{11} (pos)

Fig. 4. Quasi-elastic proton scattering from a vector polarized deuterium target

Quasi-elastic proton scattering from vector polarized deuterium provides additional, but complementary, information about NN interactions, particularly at higher values of missing momentum (p_M) . The vector asymmetry, $A_{ed}^V(p_M)$, is negative and flat if the deuteron orbital angular momentum is set to zero in the Plane Wave Impulse Approximation (PWIA). However, several effects, such as the D-state contribution, final state interactions (FSI), meson exchange currents (MEC), isobar contributions (IC), and relativistic effects (RC) can cause the asymmetry to change sign. Figure 4 shows the behavior of the BLAST $A_{ed}^{V\,7}$ as a function of p_M for for $Q^2=0.1-0.2~(GeV/c)^2$ for both the perpendicular and parallel orientations. The agreement between data and predictions from the Plane Wave Born Approximation§ (PWBA), a model which incorporates the NN exchange effects with the PWIA framework, is excellent and clearly shows the strong role these effects play for $p_M>0.2~GeV/c$. The dependence of the PWBA curves on various potentials, such as Born, Paris and V18, was tested and shown to be negligible within the statistical error of the data.

References

- 1. D. Hasell et al., The BLAST Experiment, to be published.
- 2. D. Cheever et al., Nucl. Instr. Meth. A556, 410 (2006).
- 3. R. Redwine, see plenary proceedings from this workshop.
- 4. D. Abbott, Eur. Phys. J., **421-427** (2000)
- 5. C. Zhang, Ph.D. thesis, Massachusetts Institute of Technology (2006).
- 6. P. Karpius, Ph. D. thesis, University of New Hampshire (2005).
- 7. A. Maschinot, Ph.D. thesis, Massachusetts Institute of Technology (2005).
- 8. Arenhövel et al., Phys.Rev. **C46** (1992).