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ABSTRACT

Elastic form factors are characteristic signatures of the electromagnetic properties

of hadronic matter. The more precisely we can measure these values, the more powerful

becomes the predictability of our theory.

The proton’s form factors ( Gp
E , Gp

M ) have been measured remarkably well compared

to the neutron. While the Magnetic form factor of the neutron is reasonably well known,

the Electric Form Factor still retains difficulties due to its small magnitude and the relative

inefficiency of detecting neutral particles. The lack of a pure neutron source is another

obstacle.

Although we are in pursuit of the elastic form factors, the two-nucleon system of

deuterium has been shown to be a worthy target for extracting data on the structure of

nucleons as well as properties of few-body hadronic systems. Data from unpolarized cross-

section measurements have proven insufficient for extracting Gn
E , but polarized scattering

from a polarized Deuterium target has been shown to be well suited for determination of Gn
E .

The double polarization observables of a vector polarized Deuterium target and polarized

electron beam is proportional to the product of the electric and magnetic form factors of

the neutron.

The Bates Large Acceptance Spectrometer Toroid (BLAST) has been developed

specifically to measure the scattering of a polarized electron beam off a vector and ten-

sor polarized deuterium target and thus fulfills our needs for extracting Gn
E . The Bates

accelerator provides a high-duty polarized electron beam stored in the South Hall Ring

(SHR) that is that is passing through an internal target of both vector and tensor polarized

monatomic deuterium as well as polarized monatomic hydrogen provided by an Atomic
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Beam Source (ABS). A large acceptance detector, BLAST, has been installed to measure

several scattering reactions including the directly applicable 2 ~H(~e, e′n)p reaction.

This work summarizes the experimental investigations of the extraction of Gn
E from

the BLAST data. Points were extracted at four values of four-momentum transfers (Q2

= 0.14, 0.20, 0.29, 0.41 GeV2). The world’s data and the new BLAST data were fit to

determine Gn
E to ±5.8% from 0 < Q2 < 1.8 GeV2. The best fit includes model dependent

contributions from a low Q2 bump and a smooth dipole term. A second fit is shown using

a model independent sum of gaussians in order to provide a more reliable determination of

the uncertainty of the world’s measurement of Gn
E from double polarized scattering.
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CHAPTER 1: INTRODUCTION

Physics is an interdependent foundation that gives and takes from all sciences in

order to make itself as complete and adaptive as possible. Problems need to be solved and

physicists solve them. Mathematicians live in the abstract, engineers are mundane, and

physicists operate on that horizon in between.

Within the subject, there are interesting factions of scientists that also bridge a simi-

lar divide. Experimentalists and theorists represent the symbiotic shores with few historical

heroes who have cleverly championed both with genius. Physics enables its constituencies

to communicate using a common language of ideas and these ideas have enabled humanity

to conquer natural laws and mold a new reality of lifestyle and perspective.

The foundations of physics took many years and mistakes to evolve. Electromag-

netism has been a well-developed cornerstone of physics with roots in the development of

optics and skeptical interpretations of electricity and magnetism. Eventually the conglomer-

ate of well-defined mathematical theories used to describe electromagnetic phenomena were

unified under James Clerk Maxwell’s equations. These equations are utilized ubiquitously

amongst all genres of science and are famous in their applicability and universality.

In the early 1900’s, the nucleus of the intangible atom was discovered. Among

the properties of the constituents of atoms to be experimentally verified, electric charge

was proven to exist in clumps called quanta. Magnetism was also verified in playing a

fundamental role, existing in close relation to these clumps of charge in a well-defined

fashion. Maxwell’s equations show that moving charge gives rise to a magnetic field and

vice versa. A magnetic moment is created and defined by the angular momentum of a

charge distribution which must exist for every subatomic clump of charge, e.g. the electron

and the nucleus. These values of magnetic moments were solved and identified as the Bohr



2

magneton or the nuclear magneton. These are results of the quantum properties of the

angular momentum of the electron and nucleus when solved in accordance with Maxwell’s

equations. This relationship even held when the nucleus was determined to consist of

constituent particles known as the proton and neutron. The proton was considered as a

massive clump of charge and the neutron was a clump of neutral mass.

In 1934, from the measurement of the magnetic moment of the deuteron and the

proton, the neutron was assumed to have a calculable magnetic moment[1]. The magnetic

moment has been measured using many experimental methods and has been well accounted

for in relation to its nuclear interactions within the nucleus, nuclear scattering, and even

neutron scattering from low to very high energies. Yet, as an individual particle, no presently

existing strict theory gives the sign and value of the anomalous neutron magnetic moment.

This indicates a complex internal structure that must be accounted for. Intuitively, we

must make a conjecture that the actual existence of the magnetic moment is as a point-like

magnetic dipole (the Bloch model) or is due to inner currents within a dynamic model of

the neutron (the Schwinger model). This dynamic model must account for the neutron’s

properties as a result of the dynamics of the quark constituents or the existence of a virtual

meson cloud or both. Model-dependent experiments have been done to distinguish whether

the neutron’s properties are consistent with the Schwinger model or the Bloch model, and

all presently available experimental data agree with former and disagree with Bloch.

This brings us to the question of the description of the dynamics of the neutron.

Theoretically and experimentally, physics must meet the challenge of establishing the vivi-

fication of the neutral neutron’s charge distribution. The neutron’s large magnetic moment

creates a considerable difficulty in measuring the charge distribution since it so easily over-

whelms most reproducible electromagnetic interactions providing measured observables at



3

the nucleon scale. Since there is no free neutron source, measurements on small nucleon sys-

tems also become subject to dynamic models and nucleonic potentials used to describe them.

The solution to lowering these systematic errors of the scattering experiments on small nu-

clei is to use the polarizability of the small target nuclei and the electromagnetic probe. To

this end, polarized electron beams were developed along with polarized monatomic hadronic

targets.

Using polarization experiments, nuclear physicists have established a parameteriza-

tion of the fourier transform of the neutron’s charge distribution that is currently fit with

an uncertainty of ∼ 6%1 and even the charge radius has been measured at an accuracy of

∼5%[2]. Despite the experimental success, theory is still lagging and shows substantial dis-

crepancies with measured results. Theory that well predicts the charge distribution at the

outer region of the neutron systematically falls short of predicting the distribution within

the inner region of the neutron and vice versa. The best current predictions are very recent

and come from Dispersion Theory. Phenomenological fits to the world’s data are diverse

and well motivated yet lack fundamental reinforcement.

This work sums up the measurement of the neutron’s charge distribution via the

neutron’s electric charge form factor, Gn
E , as measured in the outer region of the neutron

as described by low momentum-transfer scattering from a deuterium target. Since we are

probing the electric properties of the neutron, electron scattering is our method of exami-

nation. We must have a source of neutrons but since there is no stable free neutron target,

deuterium is chosen as a best alternative by which to maintain minimal systematic errors

while using a pre-existing well-developed dynamic nuclear model contributed by Hartmuth

1This number is a result of a global fit to the world’s data, including the results of this work. This fit
is a model dependent phenomenology, while a second fit will also be discussed in chapter 5 that is model
independent and provides an uncertainty that does not include any assumptions about the structure of the
neutron. That which is more valid may depend on who you talk to.
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Arenhövel.



CHAPTER 2: THEORY

The electromagnetic structure of nucleons is complicated by and a result of the

hadronic structure itself. Point particle interactions are well developed in quantum me-

chanics and relativistically treated in Quantum Electrodynamics (QED), yet the nucleon is

an extended object consisting of more elementary particles quite different in composition

and interaction than the leptonic probes we use to delve into their structure. Electron

Scattering will be our weapon of choice in probing the structure of the neutron since the

interaction of electrons with hadrons is given by QED and can hence be used to probe the

structure of hadrons. The ensuing discussion will continue as a pedagogical overview.

When discussing scattering, the notable observable in all scattering experiments is

the number of collisions that take place and the region, or solid angle, in which the outgoing

products of the collision are detected in a solid angle ∆Ω. Written in terms familiar to

nuclear physics experiments:

Ṅrecoil = Ṅincident × ρtarget × Lcell ×
dσ

dΩ
× ∆Ω (2.1)

where Ṅrecoil is the number of particles scattered per unit time, Ṅincident is the number of

incident particles per time used for scattering, ρtarget is the density of the target, Lcell is

the length of the cell1, dσ
dΩ is the differential scattering cross-section2 or the probability of

scattering incident particles impinging on a cross-sectional area dσ into a solid angle dΩ

relative to the scatterer (see Figure 2.1). This equation also assumes no multiple scattering.

In particle physics, scattering has been used since J. J. Thomson used an electric

field to determine the mass of an electron in 1897[3]. The general construction of the theory

1This equation can also be written in terms more appropriate to the language of Experimental Particle
Physics where Luminosity L is a commonly quoted quantity where L = ṄincidentρtargetLcell

2Nearly all the theory in this chapter is convoluted into this term
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FIG. 2.1. Simple demonstration of the differential scattering cross-section.

of scattering can be developed using Classical Mechanics[4] or Wave Mechanics[5]. The

most notable scattering experiment and equation may be from an experiment in 1909 in

which Hans Geiger and Ernest Marsden, under the direction of Ernest Rutherford, fired

α-particles at a gold leaf only a few atoms thick[6]. The general Rutherford differential

scattering cross-section of an α-particle incident on a Coulomb potential of a point charge

can easily be derived within Classical Mechanics or a Quantum Mechanics formalism and

is written as:

dσ

dΩ
=

α2Z2

4m2v4
α sin4(θe/2)

(2.2)

with α as the fine-structure constant, Z is the atomic number of the target, m is the mass

of the scatterer, vα is the velocity of the scattered α-particle and θα is the angle between the

incoming and the outgoing momentum of the scattered α-particle. Equation 2.2 is derived

using several assumptions,

Assumption I: it assumes an infinitely dense target;

Assumption II: it is purely Newtonian;

Assumption III: it assumes point particle interactions;

Obviously, all three assumptions in this list will have to be modified in order to accommodate

our current objective.
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FIG. 2.2. Feynman diagram of a relativistic electron coulomb scattering from a massive
target (me � Mtarget).

Nucleons, firstly, are not infinitely dense, i.e. they are not point-like. They are

rather light in the ultimate scheme of things and show substantial recoil velocities at low

momentum transfers. Secondly, to probe the structure of nucleons, the wavelength λ of

the incident radiation must be on the order of or smaller than the nucleon (∼1 fm). This

means that the de Broglie wavelength of an electron used to probe the nucleon must satisfy

the condition λe = h
pe

< 1 fm. This necessitates an electron velocity of at least 0.99999c

where c is the speed of light. Therefore, we definitely necessitate a relativistic theory and

we must certainly account for the recoil of the target since we are using ultrarelativistic

incident electrons.

Before we ponder Assumption III, we will must modify our differential cross-

section. In order to model the behavior with a relativistic quantum field theory, we must

take on the accomplices of Dirac spinors and Weyl matrices and use the relativistic formalism

for energy and momentum conservation3. The Feynman Diagram associated with relativistic

Coulomb Scattering from a massive target (me � Mtarget) is depicted in Figure 2.2. In

relativistic quantum field theory, taking on the typical convention h̄ = c = 1, all cross-

3I will follow the formalism of Peskin and Schroeder until otherwise noted.
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sections can be computed from the general formula:

dσ = 1
2EA2EB|vA−vB|

(

∏

f
d3pf

(2π)3
1

2Ef

)

×
∑

if |Mfi(pA, pB → {pf})|2(2π)4δ(4)(pA + pB − Σpf )

(2.3)

where pi, vi, and Ei refer to the kinematics of our interacting particles and invariant scat-

tering matrix element is labeled Mfi(pA, pB → {pf}), denoting the transition from initial

state i to final state f . The delta function and phase space factors conserve momentum

and energy for the reaction.

Going back to our initial (heuristic) problem of scattering from a Coulomb potential,

Mfi = −ieūs′(pf )γ0us(pi)Ã0(q) (2.4)

where ūs′(pf ) and us(pi) are Dirac spinors associated with the outgoing and incoming elec-

tron and their respective spins s′ and s which are summed and averaged, ieγ0 corresponds

to the QED electrostatic vertex, and Ã0(q) = Ze
q2 which is the Fourier transform of the

Coulomb potential A0(r) = Ze
4πre−µr and q is the 4-momentum transfer (pf − pi). Mfi, in

general, always enters our calculation as a contraction of the leptonic and hadronic currents

corresponding to the Feynman rules invoked from the calculation of a particular diagram.

M also consists of a sum over final states and an average over the initial states as depicted

by the generality of the indices appropriated to Equation 2.3. When inserting Equation 2.4

into 2.3, the final cross-section can be computed (known as the Mott differential cross-

section):

dσ

dΩe
=

(Zα)2

4v2
e |~p2| sin4(θe/2)

[1 − v2
e sin2(θe/2)], (2.5)

which reduces to the Rutherford cross-section at low momentum.
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2.1. Unpolarized Elastic electron-nucleon Scattering and Form Factors

Experimental attempts to verify Equation 2.5 have been carried out and verified it

to a good degree of accuracy with heavy elements (Z ≥ 12) but only when convoluting the

experimental cross-section with what became known as a Form Factor [7], e.g. dσ
dΩe exp

=

dσ
dΩe Mott

× |F (q2)|2. This Form Factor that we must invoke in order to reproduce the Mott

cross-section is the Fourier transform of an extended spatial distribution of charge and

further, allowed the phenomenological modeling of the size of the nucleus as r = r0A
1/3

where r0 = 1.2×10−15m and A is the atomic number. This form factor immediately affects

Assumption III and forces alteration of the concept of point-like interactions. Further, if

we decrease the charge and size of our nucleus and attempt to probe nucleons themselves,

we must increase our probe’s energy and account for the recoil of the target. The recoil can

be accounted for by simply inserting the divisor frec where E0
e is the initial energy of the

scattered electron:

frec = 1 + 2

(

E0
e

mN

)

sin2
(

θe

2

)

. (2.6)

When moving to the case of a single nucleon or a small nucleus, spin effects add a magnetic

interaction term to the coulombic term via the virtual photon coupling to the electromag-

netic current in the target which is associated with the magnetic moment.

When using QED to obtain information regarding an applied field (all particles in

quantum field theory can be thought of as fields), Lorentz invariance, discrete symmetries

of QED, and the Ward Identity4 will greatly constrain the form of the vertex function Γµ of

the field. To lowest order, as in the −ieγ0 term in Equation 2.4, Γµ = γµ. The mathematics

constrains the final form of the QED vertex function to all orders to be a function of the

4Any quantum field theory book will contain a reference to the Ward Identity
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4-vectors qµ, pµ
i , pµ

f and the Weyl matrices γµ:

Γµ(pf , pi) = γµF1(q
2) +

iσµνqν

2m
F2(q

2), where σµν =
i

2
[γµ, γν ]. (2.7)

The factors F1 and F2 are the Dirac and Pauli form factors, respectively, that are unknown

functions of the Lorentz-invariant q2. The Dirac form factor F1 can be thought of as

the fourier transform of the spatial distribution of the nucleon’s charge and associate with

the Dirac magnetic moment, and the Pauli form factor F2 can be associated with the

spatial distribution of the anomalous magnetic moment. This form (Equation 2.7) is used

to phenomenologically model electron scattering from complex fields, notably neutrons,

protons, deuterons, and an assortment of particles that can also be electromagnetically

probed using leptonic scattering. To demonstrate the ideas implicit in this formulation of

the vertex function, boundary conditions of these form factors for the proton and neutron

can be inferred from the static electromagnetic properties of these nucleons, e.g.

F1(q
2 = 0) =















1 proton

0 neutron

(2.8)

F2(q
2 = 0) =















0.79 proton

−1.91 neutron

(2.9)

A common form of the differential cross-section arising from a little algebra and the

general form of the vertex function is known as the Rosenbluth cross-section[8] and is used

to model the data from elastic electron-nucleon scattering where the nucleon has a mass

mN ,

(

dσ

dΩe

)

ros
=

(

dσe

dΩ

)

Mott
f−1

rec

[

(F 2
1 + τF 2

2 ) + 2τ(F1 + F2)
2 tan2

(

θe

2

)]

(2.10)

where τ ≡ Q2/4mN and Q2 ≡ −q2.
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Sachs and collaborators suggested that certain linear combinations of the Dirac and

Pauli form factors allowed for a physical interpretation of the structure of the nucleon[9].

The suggested form was,

GE(Q2) = F1(Q
2) − τF2(Q

2),

GM (Q2) = F1(Q
2) + F2(Q

2).





























F1(Q
2) = 1

1+τ (GE(Q2) + τGM (Q2)),

F2(Q
2) = 1

1+τ (GM (Q2) − GE(Q2)).

(2.11)

These Sachs form factors GE and GM are the well-known electric and magnetic form factors

most often quoted in nuclear physics. In the “Breit Frame”5, often referred to as the “brick-

wall” frame where the kinematics of the reaction are boosted into a frame where the nucleon

remains at rest, the Sachs form factors can be interpreted as the Fourier transforms of the

spatial distributions of the charge density ρch(~r) and the magnetic moment density ρmagn(~r),

i.e.

GE(Q2) =
∫

ρch(~r)e−i~q~rd3~r,

GM (Q2) = µ
∫

ρmagn(~r)e−i~q~rd3~r

(2.12)

where µ is the total magnetic moment in units of µN , the nuclear magneton. If F1 and F2 and

thus GE and GM are known, these physical interpretations immediately allow a calculation

of the rms radius of the charge or magnetic moment distribution inside the neutron and

proton, or conversely, an experiment where the rms radius of nucleons is measured would

allow for the constraint of the slope at Q2 = 0 since

< r2
ch >= −6

(

dGE(Q2 = 0)

dQ2

)

, < r2
magn >= − 6

µ

(

dGM (Q2 = 0)

dQ2

)

. (2.13)

The Rosenbluth differential cross section can also be rewritten in terms of GE and GM :

(

dσ

dΩe

)

ros
=

(

dσ

dΩe

)

Mott
f−1

rec

(

1

1 + τ

)

(

εG2
E + τG2

M

)

(2.14)

5The Breit Frame is described by a boost into the kinematic reference frame where the nucleon remains
at rest, i.e. the incoming electron’s momentum equals the outgoing momentum, ke = −k′

e and the energy
transfer ω = 0.
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where ε is the transverse virtual photon polarization:

ε ≡ 1 + 2(1 + τ) tan2(θe/2). (2.15)

It is obvious from the form in Equation 2.14 that we can divide out the Mott cross-section,

recoil divisor, and the factor (1 + τ)−1 and retain a quantity directly proportional to the

Sachs form factors. This is known as the Rosenbluth Separation and has been historically

employed in measuring the elastic electromagnetic form factors of the proton.

Equation 2.15 shows that τ and thus Q2 plays a major role in our ability to ac-

curately measure the form factors. Electron-proton scattering is highly sensitive to Gp
E

at low momentum transfers but highly insensitive at high momentum transfers where the

cross section is dominated by τ(Gp
M )2. Experiments[11, 12, 13, 14, 15, 17] have extracted

data points on Gp
E up to Q2 ≈ 10 (GeV/c)2 with error bars up to 40% at the highest Q2

points[17]. Gp
M has been measured[10, 13, 14, 16, 18] up to Q2 ≈ 30 (GeV/c)2 with error

bars of ∼ 6% at the highest Q2 points[16].

Both form factors of the proton seem to conform well with the Dipole form factor

ansatz:

Gp
E ≈ Gp

M

µp
≈ GD =

1

(1 + Q2/Λ)2
(2.16)

Λ comes from a global fit to the world’s data and is usually quoted as 0.71 (GeV/c)2. The

dipole form factor is the Fourier transform of a radially symmetric distribution decaying

exponentially and thus is a physically driven ansatz. The form factors conform well to GD

and Gp
E deviates no more than ∼6% up to 1 (GeV/c)2 and Gp

M deviates no more than ∼6%

up to about 8 (GeV/c)2.

Measurements of the form factors of the neutron from elastic scattering are diffi-

cult since there is no free neutron source. The data on the form factors of the neutron
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FIG. 2.3. The World’s data on Gn
M . Unpolarized and polarized scattering experiments

included. The form factor is shown divided by µnGD, again signifying the conformation of
the data to the dipole form factor ansatz. They can be found in [19, 13, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32]. The BLAST data shown is preliminary.

from unpolarized scattering comes from deuterium targets and recently 3He. Since Gn
M

is nearly two orders of magnitude greater than Gn
E , the unpolarized exclusive quasielas-

tic scattering cross section will do well to model the form factor Gn
M but Gn

E necessitates

more precise experimental techniques. And though we may exclusively detect neutrons

from the multi-nucleon target, the situation is further complicated by the initial state of

the target, final-state interactions occurring after electrodisintegration, and the relatively

low efficiency of neutral particle detection. This latter difficulty can be overcome by using

polarized scattering where the detection efficiency cancels out to first order.

Shown in Figure 2.3 is the world’s data on Gn
M . The conformation of the data to the

dipole fit is immediately apparent by noticing the range over which the data points remain
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close to one. The data on Gn
E from unpolarized electron scattering will be discussed in

Section 2.4.2. Since the target from which we intend to extract our data from is deuterium,

a solid introduction to the deuteron’s properties is in order.

2.2. The Deuteron

The only bound two-nucleon system in nature is the deuteron consisting of a pro-

ton and neutron lightly bound together. The isospin, angular momentum, and parity are

I(JP ) = 0(1+). Since the theoretical prediction and experimental measurement of the

deuteron’s magnetic moment have shown discrepancies, it has since been concluded and

affirmed that there is an admixture of 3S1 and 3D1 states in the deuteron’s wave function.

The D-wave contribution asserts a tensor component to the attractive force that keeps the

nucleons bound and thus allows us to use the deuteron also to probe the tensor compo-

nent of the NN interaction. Though the proper model of the potential of the deuteron is

still under debate, a discussion can be found in [36]. Once given a potential, solving the

Schrödinger equation for the system at rest allows the following description of the ground

state wave function.

The deuteron’s wave function in space is

ΨM (r) =
u(r)

r
YM

101(θ, φ) +
w(r)

r
YM

121(θ, φ), (2.17)

where

YM
JLS =

∑

mL,mS

〈J,M |L,mL;S,mS〉YLM (θ, φ)|S,mS〉 (2.18)

are the spin-spherical harmonics where M refers to the mJ substates and the z-axis (θ = 0)

is the axis of polarization. u(r) and w(r) are the radial wave functions of the S and D
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FIG. 2.4. The spatial wave functions of the S and D states in the deuteron when calculated
using the Bonn-Qb potential.

wave states, respectively, where the probability densities are defined as their squares and

the total normalization of the wave function must satisfy

∫ ∞

0
(u2(r) + w2(r))dr = 1 (2.19)

and the densities of the respective states of the deuteron are defined as

ρ0(r) = Ψ†
0(r)Ψ0(r)

=
1

4π

[

u(r)

r
−
√

2
w(r)

r

(

3

2
cos2 θ − 1

2

)]2

+
9

8π

(

w(r)

r
sin θ cos θ

)2

ρ2(r) = Ψ†
2(r)Ψ2(r)

=
1

4π

[

u(r)

r
− w(r)√

2r

(

3

2
cos2 θ − 1

2

)]2

+
9

32π

(

w(r)

r
sin θ

)2

(1 + cos2 θ).(2.20)

The radial wave functions of the bonn potential are demonstrated in Figure 2.4. The

significant reduction of the radial S wave function is a result of the repulsive nature of the

NN interaction at distances < 1 fm. The one-boson exchange or long-range description also

creates the quick drop-off of both radial functions after the maximum at approximately 1

fm. The densities of the deuteron wave functions Ψ0(r) and Ψ1(r) are shown in Figure 2.6

and demonstrated for several potentials in Figure 2.5. When mJ = 0, the density along
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FIG. 2.5. The density of the deuteron along the axis of the projection of mJ and the
transverse axis for the states mJ = 0,±1. The densities are shown for several choices of the
deuteron potential.

the axis of polarization is very small and results in a toroidal or “doughnut” shape. In the

mJ = ±1 substates, the density is centered along the z-axis and gives a “barbell” shape.

The magnetic moment of the deuteron,

µd = µn + µp −
3

2

(

µn + µp −
1

2

)

PD (2.21)

provides a general indication of the admixture of the D wave state thanks to the factor PD,

or the probability of the D-state PD =
∫∞
0 w2(r)dr. µn = −1.91304µN and µp = 2.79285µN

are the nuclear magnetic moments expressed in units of the nuclear magneton µN . The

experimental value of the magnetic moment predicts PD ∼4%[38]. The quadrupole moment

of the deuteron is also a function of the radial wave functions:

Qd =
1√
50

∫ ∞

0
w(r)

[

u(r) − 1√
8
w(r)

]

r2dr (2.22)

Both equations 2.21 and 2.22 are static properties and are further modified by extensions

to the simple potential model, i.e. the magnetic moment’s dependence on the D-state
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FIG. 2.6. Calculated density of the deuteron for the Ψ0(r) and Ψ1(r) substates correspond-
ing to mJ = 0 and mJ = ±1, respectively. These are commonly referred to as the doughnut
and barbell shapes of the deuteron.

probability is broken in more realistic potential models asserting relativistic corrections and

meson exchange currents and thus does not define the probability PD as an observable[37].

The asymptotic form of the wave functions are easily determined by modeling them

on a finite range nuclear force but still in the p → 0 limit.

u(r) ∼ ASe−γr and w(r) ∼ ADe−γr
[

1 +
3

γr
+

3

(γr)2

]

as r → ∞ (2.23)

γ ' √
εm, with m being the reduced np mass and ε is the binding energy of the deuteron.

AS and AD are normalization factors and are determined by matching equation 2.23 to the

interior region where the potential is significant. The ratio

ηd =
AD

AS
(2.24)

is directly related to tensor observables, e.g. the tensor asymmetry (to be discussed later

in this section).

For the wave functions in momentum-space, applying a Fourier transform to Equa-

tion 2.17 where we expand e−i~p·~r in spherical harmonics and integrate, one obtains for the
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FIG. 2.7. The momentum space wave functions of the S and D states in the deuteron.

S and D state momentum-space wave function

Ψ̃M (p) =

∫

ΨM(r)e−ip·rd3r. (2.25)

where in order to simplify later calculations we define

R̃0(p) =

∫

j0(pr)u(r)r · dr,

R̃2(p) =

∫

j2(pr)w(r)r · dr. (2.26)

In eq. 2.26, jM (pr) are spherical Bessel functions. A plot of R̃0 and R̃2 can be seen in

Figure 2.7. It can be noticed that there is a node in the S-state at ∼400 MeV
c and around

this momentum the D-state is highly dominant.

Using the same density calculation from the spatial wavefunctions, we get

ρ̃0(p) = Ψ†
0(p)Ψ0(p)

= 4π

[

R̃0 +
√

2R̃2

(

3

2
cos2 θ − 1

2

)]2

+ 18π
(

R̃2 sin θ cos θ
)2

ρ̃2(p) = Ψ†
2(p)Ψ2(p)

= 4π

[

R̃0 −
1√
2
R̃2

(

3

2
cos2 θ − 1

2

)]2

+
9π

2
R̃2

2 sin2 θ(1 + cos2 θ). (2.27)
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FIG. 2.8. The measured and calculated deuteron momentum distributions. Included
measurements are open squares[46], open diamonds[50], open triangles[51] and the closed
circles[49]. n(p) is Blomqvist’s notation for momentum density, and the calculations are
done with the Paris potential by H. Arenhövel for the purpose of Blomqvist’s paper[49].

These densities offer initial intimations of how polarization will affect the results of mea-

surements made on the momentum density in the deuteron.

As a pedagogical example, in the Plane Wave Impulse Approximation (PWIA),

formerly known as the one-photon exchange impulse approximation, the incident electron

transfers momentum k and energy ω to a proton with initial momentum p within the

deuteron. The proton is ejected with a final momentum p′. The residual neutron recoils

at n′. In such a straightforward example, by momentum conservation, p = −n′ = p′ − k.

This approximation gives the definition of the oft quoted missing momentum pm = −p = n′

and pm is approximately analogous to p in eq. 2.27.

The total momentum distribution in the unpolarized deuteron in PWIA can be given

by

ρ(pm) =
1

3
(ρ̃+1 + ρ̃0 + ρ̃−1) = 4π(R̃2

0 + R̃2
2). (2.28)

This exact quantity has been measured[46, 47, 48, 49] and is shown in Figure 2.8. The
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momentum distribution suggests the possibility of the measurement of an asymmetry. The

short-dashed and long-dashed curves in Figure 2.8 are the contributions from the S and

D wave functions. When quantizing the spin of the deuteron along the axis of momentum

transfer, we can form an asymmetry corresponding to the respective terms in the total

deuteron’s momentum density ρ(pm). This is called a tensor asymmetry AT
d since the

measurement of the resulting difference in momentum distributions can be correlated with

the ratio of S and D wave amplitudes within the deuteron. The asymmetry is written

AT
d (pm, θ) =

1
2(ρ̃+1 + ρ̃−1) − ρ̃0

ρ̃+1 + ρ̃0) + ρ̃−1

=
1

2

(

R̃0R̃2

√
8 + R̃2

2

R̃2
0 + R̃2

2

)

(

1

2
− 3

2
cos2 θ

)

. (2.29)

θ is the angle between ~pm and the momentum transfer. The asymmetry would obviously

be zero were R̃2 = 0 and it also crosses zero when cos θ = ± 1√
3
. When finding the maxima

of this function, we find that at pm ∼ 300 MeV R̃0 = 1√
2
R̃2. In PWIA, this would be the

essential measurement with which to observe the ratio AD/AS motivated in equation 2.24.

Also, in the limit where R̃0 � R̃2, AT
d (pm, θ) is directly proportional to the ratio R̃2

R̃0
and

this, further, makes AT
d ideal for measuring the D-state contribution.

In order to further motivate the need for more precise experiments, e.g. polarization

experiments, Table 2.1 demonstrates some inconsistencies between nuclear potential models

and the measured values of the deuteron’s static properties. There are still major discrep-

ancies and heavy debate concerning the predictability of these values, especially that of Qd.
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TABLE 2.1. The experimental data is taken from a table in [38] and the respective citations
can be found there. The Argonne v18 calculations of µd, Qd, AD/AS , rd, εd can be found in
[42] while rch comes from [43]. The calculations of µd, Qd, AD/AS and εd can be found in
[44] while rd and rch were taken from [45].

Quantity Measured Argonne v18 Bonn6

µd 0.8574382284(98)µN 0.871µN 0.852µN

Qd 0.2859(3) fm2 0.275 fm2 0.270 fm2

AD/AS
7 0.0256(4) 0.0250 0.0256

rd
8 1.975(3) fm 1.967 fm 1.966 fm

rch
9 2.130(10) fm 2.123 fm 2.1345 fm

εd 2.22456612 MeV 2.224575 MeV 2.224575 MeV

2.3. Polarized Elastic electron-deuteron scattering

The diagram of observables within polarized electron scattering is shown in Fig-

ure 2.9. Variables in the diagram are assigned assuming scattering off of a deuterium target

though pnp can be taken as a completely general momentum. The overview of polarized

6µd and Qd not including relativistic or meson-exchange corrections.
7Taken from polarization experiments.
8As defined in [44], the deuteron’s structure radius rd is defined as the square root of the sum of the

rms-half distance r2
m between the two nucleons, i.e.

r2
m =

1

4

∫ ∞

0

[u2(r) + w2(r)]r2dr,

a relativistic correction r2
SO following from the spin-orbit part of the one-nucleon charge operator, i.e.

r2
SO = −6(2GS

M (0) − GS
E(0))

PD

8m2
N

where GS
E/M(Q2) are the isoscalar magnetic Sachs form factors of the nucleon, and a two-nucleon piece

r2
[2] including two nucleon meson exchange, relativistic boost corrections, ∆-isobar contributions, and short-

ranged quark exchange effects and potentially a host of other small contributions that may yet be accounted
for, i.e.

r2
[2] = r2

MEC + r2
boost + r2

∆∆ + r2
QEC + . . . .

Thus, we can write rd as
r2

d = r2
m + r2

SO + r2
[2].

9The deuteron’s charge radius is defined in the same way as the nucleons, i.e. equation 2.13, except the
form factor in the derivative is the charge monopole form factor GC defined in the next section. There
has been a ∼1% discrepancy between atomic physics experiments and electron-scattering [39, 40] and this
discrepancy has been troubling though Coulomb distortion is postulated to be the solution to the Rosenbluth
and polarization transfer measurements [41] and may account for this difference in the deuteron’s charge
radius.
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electron-nucleon scattering has been well developed and will largely be based on the work

and conventions described by two seminal papers by Donnelly and Raskin [33, 34], and a

series of papers by Arenhövel, Leidemann, and Tomusiak [35].

The incoming and outgoing electron’s four-vectors kµ = (E0, ~k) and k′µ = (E′, ~k′)

along with the four-momentum transfer qµ = (ω, ~q) = (E′ −E0, ~k′,−~k), from the exchange

of a virtual photon, define the Scattering Plane. The polarization S of the target is oriented

within the Orientation Plane at Ω∗ = (θ∗, φ∗ + φ) with respect to the Scattering Plane.

The recoil 4-vector of the target is labeled pµ
np and is confined to the Reaction Plane. When

boosting into the CM-frame of the final scattered neutron and proton, the momentum will

be denoted with the superscript cms, i.e. pnp → pcms
np , and the outgoing trajectory as well,

Ωnp = (θnp, φnp) → Ωcms
np = (θcms

np , φcms
np ). The key Lorentz-invariant quantity in nearly

all of the following kinematically weighted variables characteristic of the deuteron and the

constituent nucleons is Q2 = −q2 = 4EE′ sin2 θe
2 .

Assuming parity conservation and time reversal invariance, the elastic electron-

deuteron scattering cross section can be written as the unpolarized cross-section multiplied

by a linear combination of terms dependent upon the longitudinal polarization of the elec-

trons h and vector polarization Pz of the target, as well as the tensor polarization of the

target Pzz,

dσ

dΩ
(h, Pz , Pzz) = S0(1 +

√

3

2
hPz∆ +

√

1

2
PzzΓ). (2.30)

The factors of
√

3
2 and

√

1
2 are taken from Arenhövel’s formalism. In this form,

S0 ≡ dσ

dΩ
(0, 0, 0) ≡

(

dσ

dΩ

)

Mott
f−1

rec

[

A(Q2) + B(Q2) tan2
(

θe

2

)]

, (2.31)

which is of the same form as the Rosenbluth cross-section (equation 2.10) where all relevant

form factors and other variables explicit to the structure of the deuteron are now implicit in
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FIG. 2.9. Diagram of Polarized electron Scattering on Deuterium.

the structure functions A(Q2) and B(Q2). These kinematically weighted structure functions

are linear combinations of three physically motivated form factors corresponding to the

charge monopole GC(Q2), the magnetic dipole GM (Q2), and the charge quadrupole GQ(Q2)

of the deuteron.

A(Q2) ≡ G2
C(Q2) +

8

9
η2G2

Q(Q2) +
2

3
ηG2

M (Q2) (2.32)

B(Q2) ≡ 4

3
η(1 + η)G2

M (Q2) (2.33)

where η = Q2

4md
. The respective form factors must obviously be normalized to the charge,

quadrupole moment and magnetic moment of the deuteron in order to have physical mean-

ing. Further linear combinations of these form factors have been constructed to allow con-

nections to observables separately proportional to hPz (the vector correlation parameters

T e
1m) and Pzz (the Tensor analyzing powers T2m), e.g.

T20 ≡ −
√

2η

3S̃

[

4GC(Q2)GQ(Q2) +
4η

3
G2

Q(Q2) +

(

1

2
+ ε

)

G2
M (Q2)

]

(2.34)
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T21 ≡ 2

S̃

√

η3(1 + ε)

3
GQ(Q2)GM (Q2) (2.35)

T22 ≡ η

2
√

3S̃
G2

M (Q2) (2.36)

T e
10 ≡ η

S̃

√

2

3
(1 + η)

(

1 + η sin2 θe

2

)

sin θe
2

cos2 θe
2

G2
M (Q2) (2.37)

T e
11 ≡ 2√

3S̃

√

η(1 + η)GM (Q2)

[

GC(Q2) +
1

3
ηGQ(Q2)

]

tan
θe

2
(2.38)

where S̃ ≡ A(Q2)+B(Q2) tan2
(

θe
2

)

and ε ≡ (1+η) tan2 θe
2 . Measurement of at least one of

these tensor analyzing powers or vector correlation parameters, T20 being the most common,

on a tensor or vector polarized target is necessary in order to separate all three form factors

since GC and GQ are not separated using the unpolarized Rosenbluth separation. The

superscripts e in the latter two equations are indicating the necessity of a polarized electron

in order to measure spin correlation parameters. Using these terms allows definition of the Γ

and ∆ terms in Equation 2.30 which are proportional to the vector and tensor polarization,

respectively, of the internal target.

Γ ≡ 1√
2

[

(

3

2
cos2 θ∗ − 1

2

)

T20 −
√

3

2
sin 2θ∗ cos φ∗T21 +

√

3

2
sin2 θ∗ cos 2φ∗T22

]

(2.39)

∆ ≡
√

3

[

1√
2

cos θ∗T e
10 − sin θ∗ cos φ∗T e

11

]

(2.40)

2.3.1. Gn
E From Elastic Electron Scattering on the Deuteron. Within the

formalism of the deuteron’s electromagnetic structure elicited within the previous subsec-

tion, it is possible to extract information on the constituent nucleons inside the deuteron.

Here the isoscalar form factors Gs
E and Gs

M are introduced,

Gs
E ≡ 1

2
(Gp

E + Gn
E) and Gs

M ≡ 1

2
(Gp

M + Gn
M ) (2.41)
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and the deuteron’s so-called body form factors, Dx, [52] which are Fourier transforms of the

S and D wave function densities, e.g.

DC(Q2) ≡
∫ ∞

0
(u2(r) + w2(r))j0(Qr)dr,

DM (Q2) ≡
∫ ∞

0

[

(2u2(r) − w2(r))j0(Qr) + (
√

2u(r)w(r) + w2(r))j2(Qr)
]

dr,

DE(Q2) ≡ 3

2

∫ ∞

0
[j0(Qr) + j2(Qr)] w2(r)dr,

DQ(Q2) ≡
∫ ∞

0
w(r)

(

u(r) − w(r)√
8

)

j2(Qr)dr, (2.42)

and finally listing the actual deuteron’s form factors in terms of these new variables, the

deuteron’s form factors can be written in terms of these isoscalar form factors:

GC(Q2) ≡ Gs
EDC ,

GM (Q2) ≡ md

2mp
(Gs

MDM + Gs
EDE) , (2.43)

GQ(Q2) ≡ Gs
EDQ.

When plotting the resulting contributions to the world’s data on A(Q2), the charge

monopole dominates by more than an order of magnitude up to Q2 ∼ 0.3 (GeV/c)2. Since

the isoscalar electric form factor is directly proportional to the charge monopole form factor

of the deuteron via equation 2.43, an analysis can be performed on the world’s data on

A(Q2) in order to determine Gn
E [53, 54]. Data on these is included in Section 2.4.2.

2.4. Polarized Electrodisintegration of the Deuteron

Using the same kinematic formalism set up in the previous section and delineated in

Figure 2.9, we now characterize electrodisintegration of the deuteron. Before diving deeper

into the theory, two specific quantities can completely characterize the final kinematics of

the neutron from the electrodisintegration of the deuteron; these quantities are the earlier
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FIG. 2.10. Depiction of θcms as the angle between the outgoing momentum of the proton
and the momentum transfer in the CM-frame of the deuteron.

mentioned missing momentum pm, and the oft-quoted CM-frame polar angle between the

momentum transfer and the outgoing momentum of the proton, θcms. It is essentially the

angle θnp from Figure 2.9 but one must be sure to remember that we must boost into the

deuteron’s center-of-momentum where the outgoing neutron and proton move in opposite

directions. From here we can quantify perfect quasi-elastic scattering at pm = 0 and

θcms = 180◦ (see Figure 2.10).

The differential cross-section of deuteron electrodisintegration is typically written as

a linear combination of structure functions or as asymmetries weighted by the vector and

tensor polarization of the target and the polarization of the electron beam, e.g.

dσ

dωdΩedΩCM
pn

≡ S(h, P̃z , P̃zz)

≡ S0

[

1 + P̃zA
V
d + P̃zzA

T
d + h

(

Ae + P̃zA
V
ed + P̃zzA

T
ed

)]

(2.44)

The electrodisintegration cross section can also be written in terms of the structure

functions f
(′)IM±
α of the deuteron10 and the virtual photon density matrices ρ

(′)
α where

10The spin of the deuteron can be taken to be quantized in the direction of the momentum transfer q and
boosted into the CM-frame of the outgoing nucleons. Then the final dynamical structure of the deuteron

can be quantified by a set of structure functions f
(′)IM±
α according to the formalism in [35]. The subscripts

refer to the spin interaction between the virtual photon and the deuteron while the superscripts correspond
to the bilinear hermitian forms from the reduced t-matrix which is also defined from the T -matrix between
the initial deuteron state |λd〉 and the final disintegrated np-scattering state |m1m2〉.
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(α ∈ L, T,LT, TT )11refers to the longitudinal and transverse components of the polarization

of the virtual photon and deuteron. The unpolarized cross section is thus written,

S0 ≡ S(0, 0, 0) = c(ρLfL + ρT fT + ρLT fLT cos φpn + ρTT fTT cos 2φpn). (2.45)

Using earlier notation described in Section 3.2.5, except expanding our generalized

yields to accommodate the changing helicity of the beam, i.e. V+ → V+(+) for vector-plus

polarization (mJ = +1) and positive helicity (h = +1). Accordingly, V+(−) will be used

for vector-plus and negative helicity; V−(+) and V−(−) for vector-minus combined with

positive and negative helicity states; T−(+) and T−(−) for tensor polarization combined

with both helicity states, positive and negative, respectively. The sum of the yields from all

six of these states will be denoted by
∑

i,h Si(h). I will also list the Asymmetries in terms

of the deuteron’s structure functions f
(′)IM(±)
α and the virtual photon density matrices ρ

(′)
α .

Here we must also introduce the variable φ̃ = φcms
np − φ∗.

AV
d ≡

√

3

2
· [V+(+) + V+(−)] − [V−(+) + V−(−)]

∑

i,h Si(h)

≡ c

S0

1
∑

M=0

[

(ρLf1M
L + ρT f1M

T + ρLT f1M+
LT cos φcms

np + ρTTf1M+
TT cos 2φcms

np ) sin Mφ̃

+ (ρLT f1M−
LT sin φcms

np + ρTT f1M−
TT sin 2φcms

np ) cos Mφ̃
]

d1
M0(θ

∗) (2.46)

AT
d ≡

√

1

2
· [V+(+) + V+(−) + V−(+) + V−(−)] − 2 [T−(+) + T−(−)]

∑

i,h Si(h)

≡ c

S0

2
∑

M=0

[

(ρLf2M
L + ρT f2M

T + ρLT f2M+
LT cos φcms

np + ρTTf2M+
TT cos 2φcms

np ) cos Mφ̃

11The virtual photon density matrix is written assuming spin quantization along the axis of the momentum
q of the virtual photon.

ρL = −β2Q2 ξ2

2η
, ρLT = −β2Q2 ξ

η

√

ξ+η
8

ρT = −Q2

2

(

1 + ξ
2η

)

, ρTT = Q2 ξ2

4η

ρ′
LT = −βQ2 ξ√

8η
, ρ′

T = −Q2

2

√

ξ+η
η

where

β =
|qlab|
|qbreit| =

√
1 + τ , ξ =

Q2

(qlab)2
, η = tan2

(

θe

2

)
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− (ρLT f2M−
LT sin φcms

np + ρTT f2M−
TT sin 2φcms

np ) sin Mφ̃
]

d2
M0(θ

∗) (2.47)

Ae ≡
√

3

2
· [V+(+) + V−(+)] − [V+(−) + V−(−)]

∑

i,h Si(h)

≡ c

S0
ρ′LT f ′

LT sin φcms
np (2.48)

AV
ed ≡

√

3

2
· [V+(+) + V−(−)] − [V+(−) + V−(+)]

∑

i,h Si(h)

≡ c

S0

[

(ρ′T f
′1M
T + ρ′LT f

′1M−
LT cos φcms

np ) cos Mφ̃

− ρ′LT f
′1M+
LT sin φcms

np sin Mφ̃
]

d1
M0(θ

∗) (2.49)

AT
ed ≡

√

1

2
· [V+(+) + V−(+) + 2T−(−)] − [V+(−) + V−(−) + 2T−(+)]

∑

i,h Si(h)

≡ c

S0

[

(ρ′T f
′2M
T + ρ′LT f

′2M−
LT cos φcms

np ) sin Mφ̃

+ ρ′LT f
′2M+
LT sin φcms

np cos Mφ̃
]

d2
M0(θ

∗) (2.50)

and c ≡ αE′

6π2E0Q4

where dI
M0 is defined as a rotation matrix with the elements:

d1
00 = cos θ∗ , d2

00 = 1
2(3 cos2 θ∗ − 1)

d1
10 =

√

1
2 sin θ∗ , d2

10 = −
√

3
2 cos θ∗ sin θ∗

d2
20 =

√
6

4
sin2 θ∗

In the present context, the asymmetries AV
ed and AT

d show significant deviation from

zero and serve the purpose of describing Gn
E and distinguishing the admixture of the D-

state, respectively. Ae can be described as the parity-violating asymmetry due to flipping the

helicity of the beam when analyzing ed-elastic or quasielastic breakup but is thus too small

for the statistics of the present experiment. If a third particle such as a pion is produced,

Ae becomes the fifth structure function and is not expected to be zero. AT
ed and AV

d are also

parity-violating terms expected to be zero in one-boson exchange approximation, PWIA,

and Plane Wave Born Approximation (PWBA). More realistic potentials including Meson
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Exchange Currents (MEC), Isobar Configurations (IC), and Relativistic Corrections (RC)

do make these asymmetries non-zero, but they are still too small to be reliably tested with

the statistics of the present experiment.

The beam-vector asymmetry AV
ed is sensitive to both the S and D states of the

deuteron. Figure 2.11 shows the average projection of the neutron’s spin along the axis

of the deuteron’s polarization vector as missing momentum goes up. The function can be

written using analogous forms of the momentum density distributions from equation 2.27.

When calculating the momentum density of the S and D states, we can determine the

alignment of the spin of the nucleon, and thus the neutron, with the total quantized angular

momentum of the deuteron. The function is written

Pn
z (pm) =

ρS(pm) − ρD(pm)

ρS(pm) + ρD(pm)
(2.51)

and is a function of the missing momentum. Again, this equation is plotted in Figure 2.11

and it can be seen that for missing momentum less than 200 MeV/c the neutron’s spin

is predominantly aligned with the overall angular momentum of the deuteron. For the

vector-polarized deuteron in the pure S-state or D-state, the spin is in or opposite the

direction of the polarization respectively, and AV
ed is a quantity that can quantify the internal

electromagnetic structure of the neutron.

2.4.1. The Neutron’s Electric Form Factor From 2 ~H(~e, e′n)p. Scattering of

the neutron is obviously complicated by the fact that we extract our information by disso-

ciating it from an initial configuration within a two-nucleon system, but we can take limits

to simplify the situation in order to better understand how we are extracting information

about the intrinsic structure of the neutron.
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FIG. 2.11. This shows the average projection of the neutron’s spin along the orientation of
the deuteron’s angular momentum J as a function of the missing momentum. At pm = 0 we
can see that the deuteron is entirely in the S-state while at nearly 400 MeV/c the deuteron
is entirely in the D state and the two nucleons can be taken to have their spin pointing in the
opposite direction of the total angular momentum of the deuteron. The vector asymmetry
of the neutron is only measured as a function of pm < 200 MeV/c so that the neutron’s
spin does not deviate to the point that we lose our sensitivity to Gn

E .

When detecting a neutron from the electrodisintegration of the deuteron, the missing

momentum pm or θcms characterizes the neutron’s momentum inside the deuteron. When

missing momentum goes to zero or when θcms approaches 180◦, we approach the limit of

quasielastic scattering and can thus interpret the virtual photon as transferring energy and

momentum solely to the outgoing neutron. Further, when analyzing the trends within

the asymmetry [35] AV
ed(θ

∗, φ∗), it is found that at φ∗ = 0 and θ∗ = π
2 we are probing

the region that is most sensitive to changes in Gn
E

12. As a pedagogical overview, we can

generally develop a double polarization measurement of the cross section in this transverse

geometry. The cross-section is here composed coherently of electric and magnetic scattering

12For an understanding of why this is so, we can visualize the polarization of the neutron, and thus the
magnetic moment, projected along the polarization of the deuteron. If there was truly no current distribution
within the neutron, experiments would show that the neutron’s magnetic moment is zero. Since there is an
anomalous magnetic moment, we would expect the current to be maximized in the two-dimensional plane
perpendicular to the polarization of the neutron. Further, since the neutron’s magnetic moment is opposite
of that of the proton, we can postulate that the charge density at short radii is most likely positive and thus
at longer radii we can assume the charge density to be negative.
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amplitudes which can be represented by f and g, respectively. When the helicity of the

electron is flipped, g, the dipole-dipole interaction, will change sign while the coulomb

interaction f will remain the same. When measuring the helicity dependent cross-section,

in general is simple to define

σ± = |f ± g|2 = f2 + g2 ± 2<(f · g).

The interference term allows the extraction of the physics of the electric scattering amplitude

to first order when measuring an asymmetry, e.g.

A =
σ+ − σ−
σ+ + σ−

=
2<(f · g)

f2 + g2
.

This region where we can probe the transverse geometry is called perpendicular kinematics

for obvious reasons. When θ∗ = 0 or π, the configuration is typically called the region

of parallel kinematics where the momentum transfer comes in along the direction of the

polarization of the target. Also note, that the projection of the spin of the neutron onto the

polarization of the deuteron can be characterized as a function of missing momentum which

is directly related to the expected momentum density of the nucleon within the deuteron

as determined from equation 2.27 (See Figure 2.11).

In terms of the form factors, we can rewrite the asymmetry of pure quasielastic

scattering AV
ed → AV

en,

AV
en = hPz

a sin θ∗ cos φ∗GEnGMn + b cos θ∗G2
Mn

G2
En + cG2

Mn

(2.52)

where the coefficients a, b, c are determined from electron kinematics, e.g.

a = −2
√

τ(1 + τ) tan(θe/2),

b = −2τ
√

1 + τ + (1 + τ)2 tan2(θe/2) tan(θe/2),

c = τ + 2τ(1 + τ) tan2(θe/2).
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where h and Pz are the respective polarizations of the electron beam and target.

Analyzing (2.52) the divisor will simplify to cG2
Mn since Gn

M � Gn
E . When probing

the perpendicular kinematics region and simplifying the divisor, (2.52) will reduce to

AV
en =

a sin
(π

2

)

cos(0)GEnGMn + b cos
(π

2

)

G2
Mn

cG2
Mn

(2.53)

≈ −2
√

τ(1 + τ) tan(θe/2)GEnGMn

τ [1 + 2(1 + τ) tan2(θe/2)] G
2
Mn

≈ a

c
· Gn

E

Gn
M

(2.54)

This is essentially the ideal situation, and though these are included for pedagogical

measures, they do not predict the full dynamic model. In order to accurately compare

experiment to theory, the full dynamic model and the relevant structure functions f
(′)IM±
α

from (2.46)-(2.50) are calculated and events are generated within the BLAST Monte Carlo

(see Section 3.6) and then propagated through the BLAST acceptance. The asymmetries

are extracted from the theoretical model within the Monte Carlo and compared to the exper-

imental data. H. Arenhövel of Mainz provided the calculations for Monte Carlo generation

taking into consideration those processes shown in Figure 2.12.

Included in Figures 2.13 and 2.14 is the model dependence of the vector asymmetries

as calculated and generated in the Monte Carlo along with corrections corresponding to the

processes shown in Figure 2.12. When starting from PWBA and adding more leading order

processes to the calculation, the significance of these interactions, such as final state inter-

actions, becomes obvious since they have a great effect on the expected asymmetries. When

using the total dynamic model and swapping the model of the nucleon-nucleon potential,

there is very little fluctuation in the expectation of AV
ed (see Figure 2.13).

2.4.2. Gn
E data and the Friedrich and Walcher Parameterization. Until the

1990’s, most of the data on Gn
E had come from unpolarized elastic e-d scattering. Galster
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FIG. 2.12. Lowest Order Feynman Diagrams of the Monte Carlo calculations provided
by H. Arenhövel of Mainz. The processes are: (a) PWIA e-p quasielastic, (b) PWIA e-n
quasielastic, (c) Final State Interactions (FSI), (d) Meson Exchange Currents (MEC), and
(e) ∆-Isobar Excitation Corrections (IC). The diagrams (a) and (b) approximate the Plane
Wave Born Approximation when symmetrized properly to account for nucleon exchange if
the detected nucleon is not that which was scattered from.
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FIG. 2.13. Arenhövel’s calculations of the electrodisintegration of the deuteron used in a
Monte Carlo simulation to determine AV

ed’s sensitivity to NN-Potential. This experiment
uses Bonn-Qb.

et al. had measured Gn
E [53] and established a phenomenological fit to the data starting

with the dipole fit that seemed to reproduce Gp
M , Gp

E and Gn
E . Galster’s parameterization

is referenced in Figure 2.15. It consisted of multiplying the dipole form by a factor that

respected the condition that Gn
E(Q2 = 0) = 0. It is written as:

Gn
E(Q2) =

aτ

1 + bτ
· GD. (2.55)

τ = Q2

4m2
n

and a and b are parameters determined by the data and physical constraints.

Galster’s fit13 fixed the numerator aG = −µn where µn = −1.91 is the well-known neutron’s

magnetic moment, and the parameter in the denominator was the global fit parameter set

at bG = 5.6. The Galster form is not considered to contain any essential physics other

13The parameterization in eq. 2.55 was used by both Galster and Platchkov and for that reason, a and b
in equation 2.55 are denoted as aG and bG when referring to the fit used in the Galster et al. 1971 paper,
and analogously as aP and bP when referring to the values fitted in the Platchkov et al. 1990 paper dipole
fit GD from equation 2.16.
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FIG. 2.14. Arenhövel’s calculations of the electrodisintegration of the deuteron used in a
Monte Carlo simulation to determine AV

ed’s sensitivity to corrections to the NN interaction.
PWBA is the Plane-Wave Born Approximation, FSI includes final state interactions, MEC
are corrections due to meson exchange currents, and IC are ∆-isobar configurations.
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FIG. 2.15. The data in this graph is taken from Platchkov’s analysis [54] of A(Q2) from
unpolarized elastic scattering from the deuteron. The data here are calculated from the
Paris NN-potential model. Were the data to be calculated using one of the other three
NN-potentials listed in the graph, they would follow the trends delineated by the other
curves. The line of constant slope shows the constraint of the neutron’s charge radius at
Q2 = 0. This constraint is well outlined in the next section.

than the dipole factor. The data from elastic scattering on the deuteron can be seen in

Figure 2.15 as analyzed in [54]. Platchkov reanalyzed a great deal of unpolarized elastic

scattering data on the deuteron and using the formalism from section 2.3.1, fit the data

according to several potential models. In this fit, directly analogous to the Galster form,

aP = 0.9 and bP = 3.47 were the global fit parameters.

Using equation 2.43, Schiavilla and Sick expanded upon the treatment of elastic

scattering from the deuteron by isolating the quadrupole form factor and extracting the

isoscalar electric form factor [82]. The only sources of theoretical uncertainty come from the

potential model and two-body currents in the form of the long-range π-exchange operator.

Since π-exchange contributions dominate for the quadrupole form factor, calculations with
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FIG. 2.16. The data from [82] on the analysis of Gn
E from the quadrupole form factor of

the deuteron.

“realistic” models are shown [81] to deviate very little and thus the theoretical uncertainties

involved in extracting Gn
E from GQ(Q2) are significantly smaller than extracting Gn

E from

A(Q2). Also, the meson exchange contributions are expected to be more reliable for DQ

than for DC in equations 2.42. GQ(Q2) is extracted from the world’s data on A(Q2) and T20.

The results on Gn
E are shown in Figure 2.16. With the success of BLAST’s measurement

of T20 from elastic electron deuteron scattering [83], a new analysis following the process

exploited by Schiavilla and Sick should soon follow.

From the early 1990’s through to the present, the world has begun using polarization

techniques to obtain more precise information about the nucleons and nuclear structure in

general. The advantages in measuring the form factors were heavily motivated by a paper

in 1981 [80]. The data that has emerged in the past 10 years has allowed a more precise

determination of the structure of the nucleon. Double polarization and polarization transfer
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FIG. 2.17. The world’s data on Gn
E from modern polarization experiments. Data included

is from [84, 86, 87, 88, 89, 90, 91, 92, 93, 94].

techniques have considerably lowered the systematic uncertainties in the determination of

nucleon form factors. The data in Figure 2.17 are the world’s data using polarization

experiments. The precision with which Gn
E is known is still the worst of the four intrinsic

electromagnetic form factors of the neutron and proton, but with each advance there is a

stronger constraint on parity violation and nucleon models.

In 2003, a remarkable paper [95] was published in which a phenomenological fit that

starts from physical motivations of a constituent quark core surrounded by a pion cloud

as is well in agreement with the best theoretical models thus introduced. The modern

polarization data does not appear to conform to a smooth dipole curve as defined by the

Galster parameterization nor do the low Q2 points in Figure 2.16. The “bump,” or “peak-

region” as described by Friedrich and Walcher that seems to characterize the region between

0.2 < Q2 < 0.4 (GeV/c)2, seems to necessitate a better picture than that of the Galster

parameterization. The authors introduced a parameterization of the form

Gn
E(Q2) =

a10
(

1 + Q2

a11

)2 +
a20

(

1 + Q2

a21

)2 + abQ
2



e
− 1

2

(

Q−Qb
σb

)2

+ e
− 1

2

(

Q+Qb
σb

)2


 . (2.56)
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The initial two terms are dipole terms that take their physical cue from the constituent

quark core, while the superposition of normalized Gaussians characterizes the bump region

which takes its physical cue from an assumed pion cloud. Though the neutron’s electric

form factor motivated the new parameterization, it seems that each of the nucleons show a

bump of nearly the same width (≈ 0.2 (GeV/c)2) at nearly the same value of momentum

transfer (≈ 0.3 (GeV/c)2, though the bump for Gp
E is much lower at about 0.07 (GeV/c)2).

The fit must of course satisfy Gn
E(Q2 = 0)=0 and is thus normalized to such a

constraint. Qb is the location of the bump and σb is the width. The parameters with

subscripts are all fit to the data while obeying the constraint at Q2 = 0. Unfortunately, as

is obvious from Figure 2.17, the constraint of the neutron’s charge radius does not seem to

have been considered and is thus the only failure of the parameterization since the χ2 is

significantly smaller when fitting the Friedrich and Walcher parameterization rather than

Galster to the data.

2.4.3. An Important Constraint on Gn
E: the Neutron’s Charge Radius.

The neutron’s charge radius constrains the fit for Gn
E by the equation

< r2
ch >= −6

(

dGE(Q2 = 0)

dQ2

)

. (2.57)

Experiments done to determine the neutron’s charge radius are well advanced and this will

review the measurement as it is very important in constraining the fit to Gn
E . The formalism

will primarily follow the treatment in [2].

In the collision of a neutron with an atom, a number of secondary electromagnetic

interactions contribute to the process that is largely a nuclear interaction. Key corrections

to the scattering lengths obtained from neutron scattering measurements include the spin-

orbit (Schwinger) interaction, the Foldy interaction, a magnetic dipole interaction, electric



40

polarizability and the intrinsic charge radius of the neutron. These measurements provide

the best data on the charge radius of the neutron. The interaction energy can be written:

V = VN + VM + VE + VP (2.58)

where VN is the contribution from the strong force, VM is the magnetic contribution, VE is

due to the electrostatic energy of the neutron and VP is a result of the neutron’s polariz-

ability.

The energy of the interaction can be taken directly from electrostatics, then applying

a multipole expansion we show

VE(r) =

∫

φ(r + r′)ρn(r′)dr′

= (Q0 + Q1 · ∇ +
1

2
Q′

2 : ∇∇ + . . .)φ(r)

where Q0 and Q1 are the usual charge monopole and dipole terms but the quadrupole is

different. Foldy showed [63, 64] that there is an important term called the charge separation

term where rn is the intrinsic charge radius of the neutron.

Q′
2 =

∫

r′2ρn(r′)dr′,

= Q2 + 2ε1,

and ε from the charge separation term,

ε =

∫

r′2ρn(r′)dr′ ≡ 1

6
er2

n. (2.59)

Arguing away terms Ql where l ≥ 2 since the neutron is a spin-1/2 particle, VE is then

written as

VE(r) = (Q0 + Q1 · ∇ + ε∆)φ(r) (2.60)
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where higher order charge separation terms are ignored. Taking the Fourier transform and

deriving the scattering amplitude FE using the Born approximation

FE = −bEeiq·R,

where bE is the electrostatic scattering length defined by

bE =
2mZe

h̄2

[

ze

q2
− i

le

q
σ · q̂ − ε

]

(1 − f(q)) (2.61)

= −bIZ(1 − f(q)) (2.62)

The coefficient and the first term of eq. 2.61 represent Rutherford scattering of a neutron

with charge ze, l corresponds to the dipole term and f(q) is the atomic form factor of the

atom which comes from a Hartree Fock calculation that takes into account the screening of

the nuclear charge by the surrounding electron cloud. bI is the intrinsic neutron-electron

scattering length:

bI ≡ 2mne

h̄2 ε =
1

3
(mn/me)

r2
n

a0
. (2.63)

The actual neutron electron scattering length, i.e. be = bI +bF , measured in experiment also

includes the Foldy scattering length bF which governs several interactions, a) the Foldy term

or the direct spin-independent interaction between the neutron magnetic dipole moment and

the atomic charge density, b) the Schwinger term or the spin-orbit interaction between the

neutron magnetic dipole moment and the atomic electric field, and c) the nuclear magnetic

dipole interaction with the neutron’s magnetic dipole.

The coherent cross section σc comes from the neutron’s interaction with the nucleus

and σc = 4πb2
c gives the coherent scattering length bc. Neutron waves scattered by the nu-

clear interaction and the separate waves scattered by the charge density interfere coherently.

From this knowledge, the neutron-electron cross section is expressed within the interference
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term

σne = −4π[2bcbe(Z − f(E))], (2.64)

where Z − f(E) is the charge density of the atom and f(E) takes into account the electron

cloud along with a solid angle integration over the atomic form factor f(q). The energy

dependence of σne is summarily contained in [Z − f(E)]. The accurate measurements of

the transmission T (E) of neutrons through a sample is given by

T (E) = e−Nσtot (2.65)

where σtot = σne +σc. Using liquid 208Pb and 209Bi, the most accurate and widely accepted

measurements have been done [65] and the results on the neutron’s mean charge radius is

< r2
ch >exp= −0.115 ± 0.003 ± 0.004fm2 (2.66)

2.5. Theoretical Models of Nucleon and Deuteron Structure

The structure of the nucleons is a problem that has spawned the categorization and

description of the strong force regime. The strong interaction is one of nature’s fundamental

forces and building upon the success of Quantum Electrodynamics (QED), Quantum Chro-

modynamics (QCD) is the physical theory of the strong interaction. It’s special property

of asymptotic freedom was discovered by experiment [55] and then derived as a property of

non-Abelian gauge theory [56, 57, 58], explaining the interaction of quarks and gluons and

the confinement displayed by nuclei at low energy scales.

Still today, Quantum Chromodynamics is not solvable. In the low energy, non-

perturbative regime, the coupling becomes very strong and exhibits confinement of color.

The gauge theory is a continuum and this forces the exceedingly difficult calculations to

be unsolvable though it has been shown that a discrete statistical mechanical system on a
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four-dimensional Euclidean Lattice may offer a possible approximation scheme [59]. The

nucleons, fortunately for us and unfortunate for theory, lie in this low energy regime. Thus,

calculating the large scale continuous distribution of electric and magnetic distributions de-

termined from experiment has proven difficult and is not reliably done by any camp in the

multi-nodal landscape of particle and nuclear theory save those who fit predominantly ad

hoc phenomenological functions to the world’s data. At large momentum transfer, asymp-

totic freedom at short distances promotes the relevance of perturbative methods; since the

binding of hadrons is a long-distance effect, nonperturbative effects must also play a cru-

cial role. The quantitative description of electromagnetic form factors requires consistency

within both length scales.

Perturbative QCD (pQCD) uses the property that the interaction matrix sums over

states at high momentum transfer where the partons within the hadron demonstrate small

coupling. This makes pQCD a good approximation at high energies, yet typically poor at

low energy where the strong coupling constant becomes large. Usually a mass scale Λ is

defined and the strong coupling constant is expressed

αs(Q) =
2π

b0log(Q/Λ)
, (2.67)

where b0 expresses the number of quark flavors. From this approach, pQCD has allowed

the most precise tests of QCD.

As far as the nucleon form factors are concerned, Brodsky and colleagues [60, 61, 62]

discerned scaling laws and asymptotic behavior applicable to the nucleon form factors. The

most notable result, with respect to the neutron and proton is the large Q2 behavior of the

ratio
Gn

M

Gp
M

→ −2
3 , which comes remarkably close to the actual value of µn/(1+µp) = −0.685.

Lattice QCD allows non-perturbative approaches to QCD. QCD is a highly nonlinear

continuum theory with analytically intractable path integrals. These can be reduced by
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using a discrete set of space-time points called the lattice, which naturally introduces a

momentum cutoff that regularizes the theory. The numerical computations associated with

the non-perturbative energy scale are carried out on supercomputers since they are insoluble

by means of analytic field theories. The two most active groups in predicting low energy

phenomenological behavior of the nucleon are the QCDSF and LHPC collaborations.

The most recent papers [66, 67, 68, 69] are slowly approaching the actual behavior

in the low momentum transfer region yet are still hindered by difficulties inherent in 3-point

correlation functions, e.g. computational costs on the lattice go as m−9
π and the u and d

quarks are taken as larger than reality to enable inversion of the fermionic matrix, then

extraction of physical quantities requires extrapolation to the physical quark masses. The

state-of-the-art lattices use a grid of 323×64, the spacing a ∼ 1fm or slightly less to encom-

pass a total length of nearly 3 fm. In order to recover continuum physics, it is necessary

to run computations at several values of a and then extrapolate to a = 0. Quenched cal-

culations assume three quarks and the intermittent gauge fields, while unquenched lattice

calculations include the u and d quark seas and are thus, much more complicated and com-

putationally intensive. The electromagnetic form factors of nucleons predicted from lattice

QCD still deviate considerably (though the isovector magnetic form factor GM = Gp
M −Gn

M

is coming close to the experimental value [67]) from data and it seems that the low energy

regime will remain significantly outside of measured values until a new generation of ma-

chines can handle the inherently complex numerical simulations.

Two significant models of the nucleon in recent history are the Skyrmion, a topolog-

ical soliton model, and the MIT Bag Model which confines three non-interacting quarks to

a spherical cavity. The Skyrmion model is considered topologically stable and is interpreted

as a conservation of baryon number. The model provides interesting insight yet predicts
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nucleon mass, radius, and axial coupling at approximately 30% of experimental values. The

MIT bag model assumes non-interacting quarks justified by the idea of asymptotic free-

dom and quark confinement. There is no meson interaction and thus the MIT bag model

necessitates heavy modification.

The Chiral Bag Model is a merging of the Skyrmion (which can be written to re-

spect chiral symmetry [76] and is an effective pion field) and MIT bag model. The major

modifications to the bag model are essentially of this nature of adding a pion field that

respects chiral symmetry. A hole is removed from the middle of the Skyrmion and the bag

model is thrown inside. The missing part of the baryon number density from the missing

volume within the Skyrmion is entirely made up for by the quark fields inside the bag. The

chiral bag models do a much better job of extracting physical properties within 5-10% of

the experimental values for the mass and axial coupling constant.

A specific modification to the MIT bag model is the Cloudy Bag Model which inserts

the missing pion field that is quantized and coupled to the quarks within the bag model.

This allows relativistic quark wave functions and confinement as well as respecting the

aforementioned chiral symmetry. The problem with using it to predict phenomena such

as the electromagnetic form factors is that the cloudy bag model does not respect gauge

invariance in all frames [70, 71], and thus may require extra terms to be added [72, 73].

Though, the model does respect gauge invariance in the Breit frame [74] and can be used

within such a frame to predict form factors. Light front dynamics (Poincaré invariance) can

also be used with the cloudy bag model and seems to come within 5-10% of the values for

the electromagnetic form factors of the nucleon [75].

Chiral Symmetry is also a consequence of the QCD Lagrangian. Spontaneous break-

ing of the chiral symmetry implies pions as massless Goldstone bosons and allows formula-
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tion of a perturbation theory (ChPT) at low energies. ChPT can also be used to calculate

static properties [137] such as magnetic moments, radii, polarizabilities, etc. The chiral

soliton model is also somewhat of a modification to the Skyrmion model and is made to

introduce spontaneous symmetry breaking within the bound state of the nucleon. Similar

to ChPT, this symmetry breaking necessitates the introduction of Goldstone bosons within

the theory with the pion as the lightest of them. A considerable amount of work has been

done on expanding this theory and form factors have been predicted generally well[77] at

low Q2.

Effective field theories such as Dispersion theory and Vector Meson Dominance are

well documented and represented. Dispersion theory uses a spectral representation for

the isoscalar and isovector form factors and uses existing data to parameterize the fitted

dispersion relations while making strategic use of introducing residues within the complex

plane in order to preserve scaling in the high energy, perturbative QCD regime. Vector

Meson Dominance builds upon Dispersion theory and restricts the interaction of the virtual

photon with a vector meson. Some models perform better than others in predicting the form

factors of the nucleon [78, 79]. Recently the best prediction of any of the presently discussed

theoretical models comes by way of Belushkin, Hammer, and Meißner [142]. They use

Dispersion models that include constraints from meson-nucleon scattering data, unitarity,

and perturbative QCD. The nucleon’s electromagnetic form factors are well predicted within

Dispersion theory compared to the rest of the theoretical formulations discussed in this

section.



CHAPTER 3: THE BLAST EXPERIMENT

The Experimental Setup at MIT-Bates Laboratory in Middleton, MA consists of a

Linearly Accelerated Electron Beam that is pumped into a high-duty factor storage ring.

The Beam is Polarized and the Polarization is maintained over the course of the Storage

Ring’s lifetime by a set of Superconducting Siberian Snakes. The Storage Ring is approx-

imately 190 meters long and intersects the South Experimental Hall. Within the South

Hall is the Atomic Beam Source which is a Hydrogen or Deuterium Gas Internal Target.

The Internal Target lies within the center of the BLAST Spectrometer. The BLAST Spec-

trometer consists of symmetric Drift Chambers, a symmetric array of Cerenkov Counters,

a symmetric array of Time-Of-Flight Scintillators, and an asymmetric array of several Neu-

tron Counters - weighted for higher neutron detection efficiency in the sector where we wish

to measure AV
ed(θ

∗
d = π/2 + δ, φ∗

d).

My contributions to the experiment includes modeling of the magnetic field of the

toroid (Section 3.3), quality control of the wire chambers (Section 3.4.1) and cerenkov

detectors (Section 3.4.2), and neutron detector calibrations (Section 3.4.4).

3.1. MIT-Bates And The South Hall Ring

Figure 3.1 shows a schematic of the MIT-Bates South Hall Ring. The internal tar-

get area is indicated along with the placement of the Siberian Snakes and the Compton

Polarimeter. The following Table 3.1 summarizes the key specifications of the Linear Ac-

celerator and South Hall Ring.

Longitudinally Polarized Electrons are extracted from a Laser driven GaAs crystal

and accelerated to an energy of 850 MeV in a pulsed LINAC and recirculator. The pulsed
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FIG. 3.1. The MIT-Bates South Hall Ring is depicted with clear delineations of the Internal
Target, the Siberian Snake, and the Compton Polarimeter.
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TABLE 3.1. Characteristics of the MIT-Bates Linear Accelerator and South Hall Ring.

Total Length 160 m
Number of Klystrons 12

Number of Transmitters 6
RF Pulse Length 0-25 µs

Accelerator Frequency 2.865 GHz
Recirculated Beam Energy MAX 1.06 GeV

Max Beam Duty Cycle 1%
Max Pulse Repetition Rate 1 kHz

LINAC can accelerate the beam to a maximum of 500 MeV in one cycle, then must recir-

culate once to accelerate the electrons to the final energy. The beam is then injected into

the South Hall Ring head-to-tail and can reach currents in excess of 200 mA by stacking

beam pulses of a few mA at an injection rate of about 10 Hz. The electron beam has

two operational modes within the Storage Ring, the stretcher and Internal Target mode.

In stretcher mode, the beam has operated above a 50-minute lifetime. In Internal Target

mode the lifetimes are typically above 20 minutes.

Longitudinal Beam Polarization is maintained at the Internal Target by a Siberian

Snake Spin Rotator. Strong depolarization effects due to non-linear spin resonance were

observed but the vertical betatron tune was adjusted and the high polarization ( 70%) is

maintained for the entire lifetime of the beam. A Compton Polarimeter located upstream

of the Internal Target measures beam polarization continuously. An RF-driven spin flipper

is located downstream of the Internal Target providing the capability for multiple reversals

of the polarization in a single storage cycle. Two sets of slits position the beam to mini-

mize beam halo and experimental background. Beam Quality information comes from four

symmetrically placed phototubes Beam Quality Monitors (BQMs) located downstream of

the Internal Target and from the total hit multiplicity within the Drift Chambers used for

particle tracking. Strong correlations are evident between both, the signals from the BQMs
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and the signal-to-noise ratio within the Drift Chambers[96]. When the BQMs are showing

a small signal and the signal-to-noise ratio of the Wire Chambers is high, the lifetime of

the beam also shows significant improvement.

The current in the storage ring is measured with a zero-flux DC current transformer

(LDCCT). The beam charge from the ring LDCCT is converted by a voltage-to-frequency

converter and is monitored and measured in the VME scalers. There are two channels. One

measures all of the charge passing through the ring while the other measures the charge

when the Data Acquisition system (DAQ) is alive. This latter channel is the beam-gated

integrated charge used to normalize experimental yields from selective spin orientations of

beam and target.

3.1.1. Siberian Snakes. The schematic in Figure 3.1 shows the MIT-Bates South

Hall Ring. The location of the Internal Target is clearly marked. On the far side of the

ring, also indicated in Figure 3.1, a Siberian Snake [97] has been installed. This apparatus

can maintain longitudinal electron polarization at the internal target for electron energies

up to 1.1 GeV [98].

Maintaining longitudinal polarization for internal target operation during beam op-

eration is complicated by the fact that for the electron g − 2 is non-zero. At all but ’magic’

energies the spin precesses with respect to the momentum through each circulation in the

SHR. A Siberian Snake was implemented to ensure purely longitudinal polarization at the

location of the internal target.

The Siberian Snake was designed by the Budker Institute of Nuclear Physics. There

are two superconducting solenoid magnets within. The insertion point was widened to

accommodate the field of the Snake (10.5 Tm/GeV). At the point of Snake insertion the
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FIG. 3.2. The dimensions of the Siberian Snakes and adjacent magnets used for electron
beam optics.

optics is equivalent to a space free of magnets and therefore the optical properties of the

SHR are negligibly changed whether or not the Snake is powered on. The two 0.8 m

superconducting solenoids maintain peak fields in excess of 7 Tesla.

The beam is injected with longitudinal polarization. The Siberian Snake within the

opposing straight region precesses the spin vector by π about the momentum vector to

cancel the precession in the south arc with the precession over the north arc of the SHR[99].

Any transverse polarization components resultant of traversing the southern half of the ring

are rotated back into the longitudinal direction by the dipoles in the northern half of the

SHR. The Siberian Snake eliminates the linear dependence of the spin tune on the beam

energy.

3.1.2. Compton Polarimeter. The laser back-scattering Compton Polarimeter

took its design from AmPS[100]. BLAST uses a 5-Watt Coherent Verdi laser of 532 nm

light. The laser contains a lithium triborate (LBO) frequency doubling crystal. This acts as
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FIG. 3.3. The Compton Polarimeter is clearly outlined. The laser exits the hut, is reflected
through mirrors and sent in a collinear path with an arc of the Storage Ring. Photons are
backscattered to the Cesium Iodide crystal calorimeter.
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FIG. 3.4. This plot shows the daily results of the Compton Backscattering asymmetry
data. The finalized average of the South Hall Ring’s polarization of the electron beam is
0.6500 ± 0.0004 ± 0.0400 over the course of the entire experiment analyzed as the subject
of this dissertation.

a single-mode cavity and the output of the laser is extremely monochromatic. The analyzing

power is about 2% at maximum.

The laser light is circularly polarized by a Helicity Pockels Cell which allows for

rapid helicity reversal. The laser is constrained to interact with the beam at an angle of

less than 2 mrads[101] over a straight region of about 4 m. The laser undergoes Compton

scattering within the interaction region upstream of the Internal Target so to easily avoid

background bremstrahlung radiation. A series of collimators, absorbers, and sweep magnet

and charged particle veto counters are employed to reduce charged particle and synchrotron

light backgrounds. The photon calorimeter for measurement of the backscattered photons’

energy spectrum is located 10 meters from the interaction area so as to further prevent

background. For the photon calorimeter, a pure CsI crystal was selected for its fast resolving

time, < 100 ns, and reasonable light output.

Asymmetries are formed as a function of energy from subtracted yields of detected

photons. The asymmetry is then fit with a function that represents the polarimeter’s ana-

lyzing power. Plots of the Compton Polarimeter’s measurements can be seen in Figure 3.4.
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The average polarization over the course of the nine months of experimental running as

measured by the Compton Polarimeter is 0.6500 ± 0.0004 ± 0.0400. The uncertainty of

this measurement is dominated by systematics, predominantly due to the meager ∼ 2%

analyzing power.

Tremendous difficulties came with overcoming a decrease in conductance of the ring

due to the combination of the collimator and storage cell, the increase in the beam’s emit-

tance due to the ionization of the gas in the storage cell, and the indirect steering of the

electron beam due to the magnetic field within the internal target region. The BLAST op-

erations group astoundingly overcame each of these obstacles. Were the DOE to close Bates

and assimilate the hardware and manpower to locations in remote regions of the country,

it would be a tremendous brain drain and quite debilitating to the expertise of MIT and

the Bates staff.

3.2. Polarized Hydrogen/Deuterium Gas Target

The demand for Polarized Nuclear targets is on the rise in Nuclear and Particle

Physics. The advantages of such experiments are well evident when considering the mea-

surements allowed. In general, polarized targets probe the properties of Spin dependence

of the strong and weak interactions, Few-Body physics, Tests of Fundamental Symmetries,

and production and analysis of polarized particle beams.

Polarized targets come in two forms, solid and gaseous. The considerations to take

into account when choosing a polarized target are numerous. Solid targets are advantageous

when considering target thickness, Isotopic Purity, and determination of the Polarization of

the target. The cons of using a solid target include heating of the target, radiation damage

to the target, and time constraints in reversing the polarization. A gaseous target has low
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FIG. 3.5. All of the ABS is shown here. IG stands for ion gauges and V11, V14, and V15
are valves. SP’s are the sextupole magnets.
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thickness and high systematics in determining polarization and spin direction, but there is

high isotopic purity, minimal radiation damage, and a high figure-of-merit can be achieved.

When coupling the advantages of a high figure-of-merit and the minimal time required to

reverse polarization, the use of a gaseous target proves highly favorable for Asymmetry

measurements. Despite these cheat sheets of pros and cons, the decision to use a gaseous

target was incontestable since a solid target cannot be used with a stored beam.

The BLAST internal Polarized Hydrogen and Deuterium target is a transplant from

NIKHEF AmPs Ring. The Atomic Beam Source (ABS) arrived to Bates Laboratory in

August, 2000. The system had to be heavily modified to be configured to work with the

BLAST experiment. Specific modifications include: shrinking the system to fit between the

BLAST coils, modifying the ABS to operate within a 3 kGauss magnetic field, automation

of several controls and components since there would be limited access to the mechanism

during operation, increased polarization of the atoms within the target to obtain a high

Figure-of-Merit, and finally a new design to allow fast transition between Hydrogen and

Deuterium polarized targets.

3.2.1. Dissociator. The Atomic Dissociator uses an RF field fixed at exactly 27.12

MHz to separate Hydrogen and Deuterium gaseous diatomic molecules. Gas was fed from

the Polarized Gas Feed System through Mass Flow Controllers of accuracy ∼ 2−3%. These

gases are injected into a Pyrex tube cooled by a flow of deionized water that is pumped

through a concentric glass tube. Around these two tubes is a concentric RF Coil which

is connected to a fixed RF generator which supplies a power of up to 500 Watts. The

apparatus is surrounded by a grounded aluminum can which shields the rest of the working

components from the field inside the dissociator. On the bottom of the RF coil a capacitor
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FIG. 3.6. A schematic of the Dissociator used in the Atomic Beam Source for BLAST.

is connected. The capacitor is a piece of dielectric that is placed between the bottom of

the RF coil and the aluminum can. The field inside the RF coil ionizes the gas producing

a plasma, free electrons are accelerated and collide with diatomic molecules in order to

dissociate the gas. Essentially, the RF coil (L), the Capacitor (C), and the plasma (R)

create an effective LRC circuit.

The atomic gas is ejected out of the dissociator through a system of apertures that

effectively produce the Atomic Beam. They are the nozzle-skimmer-collimator. The system

was routinely optimized in order to produce the highest flux. The temperature of the nozzle

was set at 70 Kelvin in order to achieve maximum flux and lowest recombination rates. A

coldhead maintains this temperature. A small amount of Oxygen is mixed into the gas. The

Oxygen combines with some of the hydrogen [deuterium] atoms to form water which then

freezes and coats the nozzle. This has been found to prevent further recombination of the
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ejected atoms. Due to the continuous stream of freezing water, the nozzle must be allowed

to warm to room temperature and then refrozen once a week. When running deuterium, a

residue slowly builds and forces nozzle replacement approximately every three weeks.

Before installation, the dissociator’s performance was well studied with a Quadrupole

Mass Analyzer. The dissociation fraction,

αmax
H/D =

na
H/D

na
H/D + nm

H/D

(3.1)

was determined to be ∼ 90% for both gases with the BLAST field off, where na
H/D and

nm
H/D are the numbers of atoms and molecules, respectively.

3.2.2. Exploit of Deuterium’s Hyperfine Structure. The sextupole magnet

system is a sequence of three tapered sextupole magnets followed by four constant diameter

sextupoles. They use the Stern-Gerlach effect and act to focus the atomic beam in selective

hyperfine states. Between the sextupole groups, the ABS employs three separate RF field

transitions that can be used separately or in combination in order to extract vector and

tensor polarized hydrogen [deuterium]. We will focus on deuterium since that is the dataset

that will be analyzed here.

Each focusing/defocusing sextupole consists of twenty-four magnets epoxied together

at Bates. They were tested and carefully mapped. The atoms adiabatically align their

electron spins with the radial field of the sextupoles since the magnetic moment of both

hydrogen and deuterium is dominated by the electron spin. Using the ideal field components

of a sextupole, it is easy to invoke the equation for the focusing/defocusing force on the

atoms:

F = ∇(µ ·B) = µBsp∇
(

r2

r2
sp

)

= 2µBsp

(

r

r2
sp

)

. (3.2)
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FIG. 3.7. These are RAYTRACE simulations of the injected atoms traveling through the
Atomic Beam Source’s sextupole fields. The atoms pumped from the dissociator enter the
first group of sextupole magnets. The electron in the atoms are in the spin-up (mS = 1

2 )
state and thus focus. In the diagram on the left, the atoms undergo an RF transition that
reorients the spin into a spin-down (mS = −1

2) state and they defocus through the second
group of sextupoles. On the right, the atoms maintain the spin-up configuration and are
focused in the second sextupole group.

The variables Bsp and rsp are the characteristic pole-tip field and radius of an ideal sex-

tupole. The radial force guarantees the separation of electron spin-up and spin-down states.

Effectively this will separate the deuterium states 1, 2, and 3 from states 4, 5, and 6 that

are described below in Equation 3.4. When the ABS is immersed in the BLAST field, it was

noticed that the external BLAST field was causing the atomic beam to defocus. This effect

has never been observed in any other experiment involving atomic beam sources because

the were all operated in the presence of weak external fields. The external field was then

included in the calculations for the final intensity of the beam and verified a 50% decrease

from zero external field calculations. In order to correct the situation, steel was used to

shield the sextupoles from the external magnetic field induced by the Toroid.

The ABS uses RF fields to force transitions in the hyperfine states of deuterium.



60

The energy levels in deuterium can be split into a quadruplet and a doublet when immersed

in a magnetic field. The Hamiltonian of the interaction is written as

HHF =
2

3
hν0I · S + µB(gII + gSS) · B, (3.3)

where µB is the Bohr magneton, ν0 is the “characteristic” frequency of deuterium’s hy-

perfine interaction, and gI = −0.00047 and gS = 2.0023 are the gyromagnetic fac-

tors for deuterium nuclei and the electron, respectively. As mentioned above, when ap-

plying a magnetic field, it is easy to see that the electron’s gyromagnetic factor will

dominate the interaction that couples to the static magnetic field. The sextupoles ex-

ploit the Stern-Gerlach effect for the spin of the electron in the deuterium atoms that

are ejected from the ABS in order to focus or defocus selective states of the atomic

beam. To proceed further and motivate the use of the RF transitions that follow the

sextupole separation, the Hyperfine states from the interaction Hamiltonian in Equa-

tion 3.3 must be delineated. In the Breit-Rabi basis[102] the possible states of deuterium

can be completely accounted for. The states are written in the form |F,mf ;mI ,mS〉

where F = S + I, and mF,I,S are the z-components are of the respective quantum vectors.

|1〉 = |32 , 3
2 ; 1, 1

2 〉

|2〉 = cos θ+|32 , 1
2 ; 0, 1

2〉 + sin θ+|32 , 1
2 ; 1,−1

2 〉

|3〉 = sin θ−|32 ,−1
2 ;−1, 1

2 〉 + cos θ−|32 ,−1
2 ; 0,−1

2 〉 where

|4〉 = |32 ,−3
2 ;−1,−1

2 〉 tan 2θ± =
√

8
3B/B0±1

|5〉 = cos θ−|12 ,−1
2 ; 0,−1

2 〉 − sin θ−|12 ,−1
2 ;−1, 1

2 〉

|6〉 = sin θ+|12 , 1
2 ; 1,−1

2 〉 − cos θ+|12 , 1
2 ; 0, 1

2〉

(3.4)

B0 is the characteristic magnetic field of deuterium. Both characteristic hyperfine
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FIG. 3.8. A plot of the energy separation in the Hyperfine states of Deuterium as B/B0 is
increased. The sextupole magnet system in the Atomic Beam Source operates to focus the
states |1〉 − |3〉 and to defocus the states |4〉 − |6〉 through the Stern-Gerlach effect.

quantities of deuterium, B0 and ν0, are known to great precision[103]. Respectively, their

values are 117 Gauss and 0.327 GHz. The probability amplitudes determined by the mixing

angle θ± are solved by calculating the expectation values from the interaction Hamiltonian

Equation 3.3 and these states are expressed in the formalism used by Stenger and Rith[104].

It can be noticed that the functional probability amplitudes depend solely on the static field.

When immersed in a static field, the probability amplitudes of the spin-down populations

in states |2〉 and |3〉 decrease asymptotically along with the spin-up populations in states

|5〉 and |6〉. Immersed in an increasing static field B, the resultant energy levels of the

respective hyperfine states in deuterium atoms can be seen to behave as in Figure 3.8.

In a static field, the hyperfine populations remain unchanged. When an external

time-dependent magnetic field is applied, the hyper-fine states can follow well defined tran-

sitions. There are two possible RF transitions that can be employed. The time-dependent

magnetic field BRF can be oriented parallel to the static field or perpendicular. The ap-
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plication of a parallel time-dependent field is known as an RF σ-transition and obeys the

δmF = 0 selection rule. It is obvious from the defined states in Equation 3.4 that the possible

σ-transitions are |3〉 − |5〉 and |2〉 − |6〉. The application of a perpendicular time-dependent

magnetic field is known as an RF π-transition and obeys the selection rule δmF = ±1.

The Maxwellian velocity distribution of the atoms in the beam limit the efficiency of the

π-transitions since the atoms would spend a different amount of time within the static field

in which the time-dependent transition would take place. Therefore, the π-transitions can

only take place adiabatically [105, 106]. The adiabatic regime for π-transitions includes a

gradient magnetic field Bgr. R.J. Philpott found an analytic solution in which only two

hyperfine states exchange their population[106]. In order for the transition probability in

this selective case of an adiabatic regime to be close to unity, the gradient field must obey

Bgr � µJB2
RF

2vxh̄
. (3.5)

This is an amazing solution since it provides the potential for nearly 100% efficiency in RF

π-transitions when Bgr and BRF are properly matched.

In the ABS scheme, Mean Field Transitions (MFT) and Weak Field Transitions

(WFT) are the induced π-transitions exploited between sextupole focusing and the internal

target. The possible π-transitions with deuterium are

|1〉 ⇐⇒ |2〉 (MFT1-2, WFT1-2∗)

|2〉 ⇐⇒ |3〉 (MFT2-3, WFT2-3∗)

|3〉 ⇐⇒ |4〉 (MFT3-4, WFT3-4∗)

|5〉 ⇐⇒ |6〉 (MFT5-6)

.

The ∗ is indicated because the WFT is operated at a low frequency where the static magnetic

fields of the hyperfine transitions are not separated. They result in a cascading transition

from |1〉 − |4〉 and the transition |2〉 − |3〉. The MFT’s can be processed individually or
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in succession. Using the proper combination of sextupole focusing and RF transitions

the proper sequestered states of deuterium can be extracted from the atomic beam. One

example of a transition sequence, the extraction of vector plus, is shown here:
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Remember from Equation 3.4 that states |1〉 and |6〉 in the limit of B/B0 � 0 are indeed

polarized with mI = +1. These two states are then injected into the Internal Target.

3.2.3. Internal Target. The internal target scattering chamber was also included

in the NIKHEF ABS package. It consists of a holding field magnet, a target cell that

rests inside, a cooling system, and has thin aluminum windows. The target shares the

beam vacuum and thus necessitated strong vacuum pumping in order to ensure that beam

quality does not deteriorate. The aluminum internal target cell is motivated by an increase

in Luminosity by orders of magnitude with respect to a target consisting of a single ballistic

jet of atoms. Despite a larger probability of loss of polarization due to atomic collisions

with the cell walls, atomic recombination into diatomic molecules, and higher number of

interatomic spin exchange collisions, the increase of Figure of Merit (FOM) of an order

of magnitude easily outweighs the slight loss of polarization. The FOM for polarization

experiments is defined as:

FOM = Polarization2 × Luminosity, (3.6)
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FIG. 3.9. The density profile of the target. On the right is the actual vertex traced back from
the reconstructed track of charged particles through the Drift Chambers. The triangular
profile is well recreated and nonexistent beyond the edges of the 60 centimeter cell.

The depolarization effects of the storage cell were never extensively studied at BLAST and

thus the discussion as to contributing processes are a posteriori and not fully quantified.

The design of the storage cell is cylindrical. It has a diameter of 15 mm with an 11.9

mm inlet fed from the ABS. It is composed of 50 µm aluminum foil. It is kept chilled at a

temperature of 90◦ K in order to minimize the dwell time[107] on the cell wall. There is an

inlet from the ABS, a small outlet through which the atoms could be sampled by a Breit-

Rabi Polarimeter and Quadrupole Mass Analyzer, and open sides for allowing the electron

beam easy entrance and exit as well as through which the diffusive monatomic gas would

exit the chamber. Since the ABS injection is aligned at the center and there is vacuum at

the lateral ends of the target, a triangular density profile is immediately expected and can

be proven by showing that density as a function of the position along the axis of the cell,

ρ(z) = ρ0

(

1 − |z|
L

)

is a solution of the diffusion equation written for an ideal tube along the

z-direction with steady flow entering from the inlet at center where ρ0 is the density at the

center and L is the length of the cell.

As mentioned earlier, depolarization effects were studied extensively[107, 32]. The

three dominant interactions potentially causing the depolarization of the target atoms are
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cell wall collisions, recombination, and spin exchange collisions. Depolarization through cell

wall collisions is a function of the time spent on the cell wall in which it can interact with

the unpaired electrons and magnetic dipoles on the wall through spin exchange and Pauli

Exclusion interactions. The probability of these interaction is characterized by its frequency

of polarization relaxation which only affects the nucleus’s polarization if the atom is in a

weak field regime where the electron and nuclear spin are coupled 〈S · I〉[109, 110]. The

holding field of the target, when the ABS is pumping deuterium, is in the strong field regime

and thus the electron spin and nuclear spin are decoupled. Recombination is characterized

by the number of interatomic collisions inside the cell on the cell wall since the density is low

enough inside the cell to neglect recombination in the volume of the target. The probability

of recombination must thus be proportional to number of collisions with the wall as well as

the amount of time spent on the wall. The number of collisions with the wall is characterized

by the total Conductance Ctot of the cell and the average thermal velocity 〈v〉 =
√

kBT
M .

Conductance is in units of Pressure × V olume and with the geometry of the cell, gives

the overall average time that an atom spends inside the cell. The average number of wall

collisions 〈N〉 during that time works out to be a simple function of geometry. The resulting

dwell time τd = h
δE exp Ea

kBT arises from Arrhenius Law as a function of the adsorption energy

Ea and δE being the energy difference of possible states at the adsorption site. In the end

there are competing effects over a range of temperatures in which low temperature favors

a decrease in adsorbed atoms and high temperature favors a decrease in the time an atom

spends on the wall of the target cell. The optimal temperature to minimize recombination

as fit with this ansatz was found to be in the range 100-120◦K[111]. Finally, spin-exchange

collisions were expected to be negligible in the BLAST configuration though Bulten et al.

found a 10% drop in polarization at densities at ∼ 1012 atoms/cm3[112] which is precisely
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the density at the center of the target. The expected rate of spin-exchange collisions in

Bulten et al. was calculated using the two formulae

1

Tdd
= ρd〈σsev〉, and

d

dt
ni =

1

Tdd

∑

a,b

nanbA
i
a,b(x) (3.7)

where Tdd is the average time between d-d collisions, ρd is the density and v is the relative

velocity of the deuterium atoms. 〈σse〉 was taken from Desaintfuscien and Audoin[113]. ni

is the fractional density of deuterium in state i and the coefficients Ai
a,b that describe the

probability for states |a〉 and |b〉 to transform into state |i〉 are taken from Stenger and

Rith[104].

In order to further limit the possibility of recombination and interactions when

collisions occur with the cell wall the cell was coated with Dryfilm. Dryfilm is in a class of

chemical compounds known as organosilicons which are non-reactive compounds with low

dielectric constants, and thus, low polarizability. These compounds are also hydrophobic.

During the coating process, Dryfilm undergoes hydrolysis preventing the accumulation of

H2OandD2O molecules to the surface of the target cell that are ejected by the Dissociator

(See Section 3.2.1). Dryfilm also prevents spin exchange depolarization effects with atoms

that may still adsorb to the surface of the target[108]. In order to test the Dryfilm coating,

a water bead test was performed both before installation and after a period of running

in order to determine if it was damaged. High heat, direct interaction with the electron

beam, and radiation can all damage the coating on the cell. Commissioning runs showed

substantial damage to the target surface from the electron beam halo. A tungsten collimator

was installed upstream from the internal target and Monte Carlo simulations were run in

order to determine the proper dimensions of the collimator. After testing a few designs, the

final collimator design was obviously cylindrical with a large concentric tungsten ring, it

included a region of constant diameter for about a centimeter followed by a sharp edge where
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FIG. 3.10. Simple sketch of the final collimator design.

the diameter was approximately halved, then tapered out to the end of the collimator see

Figure 3.10. Despite great efforts, there was still a considerable positron shower emanating

from the area of the collimator, though the internal target cell was much better protected

and injection and lifetime of the electron beam showed a negligible difference.

3.2.4. Target Holding Field. The last piece of the target necessitating discussion

is that of the Holding Field of the Internal Target. It is comprised of longitudinal and

transverse electromagnetic water cooled copper coils within the scattering chamber that

houses the target cell. The longitudinal and transverse fields allow orientation in any

direction within the two-dimensional plane parallel to the earth’s surface, i.e. φBLAST = 0.

The holding field also maintains the polarization of the incoming atoms by preventing

Hyperfine interactions that can occur readily when B/B0 falls below the critical value that

allows the electron and nuclear spins to recouple.

The field was measured before installation of the cell. Surveys of the field were also

taken during downtime in between production runs in July, 2004 and January, 2005 and

June, 2005. TOSCA simulations were also done and compared. During running, there was
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also an effective measurement using electron-deuteron elastic tensor asymmetries. The es-

sential algorithm for this real-time measurement is as follows. Pzz is the tensor polarization

of our target. It is also the ratio of our raw asymmetries to the asymmetries expected and

simulated with Monte Carlo at 100% polarization. The detector is roughly symmetric and

we are measuring electron-deuteron elastic interactions where our momentum transfer is

both, roughly parallel to the orientation of spin (A
‖
raw) and roughly perpendicular to the

orientation of spin (A⊥
raw). The Monte Carlo is simulated over a range of angles and the

data is compared.

P ‖
zz(θS) =

A
‖
raw

A
‖
MC

, andP⊥
zz(θS) =

A⊥
raw

A⊥
MC

. (3.8)

When P
‖
zz(θS) = P⊥

zz(θ
S) we have our measured average spin angle. See section 4.8.1

for a more in depth demonstration of this procedure and how the systematics affect the

experiment.

Despite the real-time monitoring and the surveys and TOSCA simulation, there

were found to be considerable discrepancies between the spin angle measurements (see

Figure 3.11). When surveying the angle with transverse and longitudinal settings at 32◦,

the difference between January 2005 (31.2◦) and June 2005 (30.6◦) surveys is found to be

about 0.6◦. When surveying the configuration for the orientation of the spin angle set at

47◦, the survey from July 2004 depicted an average spin angle of 47.0◦, 0.3◦ more than

January 2005 and 0.8◦ more than the June 2005 survey. All the surveys used a 3D probe.

Despite the different values, the actual shape of the surveyed maps differed by no more

than 0.1◦. The final spin angle profile is also shown (see Figure 3.11) and is a 9th order

polynomial function of the spin angle θnominal at the center of the target. The results from

the analysis of ed-elastic tensor asymmetries are dependent upon which model is used but by

fitting in the lowest momentum-transfer region (Q2 < 0.18GeV2/c2), the model dependency
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FIG. 3.11. The measurements of the two configurations of spin profiles are shown with the
data from several measurements of the spin angle along the beam line’s intersection with
the internal target.
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TABLE 3.2. Essential Spin Angle quantities.

Year θ̄S Longitudinal Field (G) Transverse Field (G) θS
nominal

2004 31.3◦ ± 0.43◦ 500 250 34.12◦

2005 47.4◦ ± 0.45◦ 500 500 48.84◦

is minimal. The measured values of the average spin angle turned out to be 31.3◦±0.43◦ and

47.4◦±0.45◦. Another result in the 47◦ configuration comes from the vector asymmetries in

elastic electron proton collisions from a Hydrogen target. The result from that experiment,

which is less sensitive than ed-elastic, is 47.7◦ ± 0.8◦ which was well in agreement with the

measurement from the ed-elastic tensor asymmetries.

Final conclusions as to the spin angle in the two configurations were arrived at in

May, 2006. The agreement between the January 2005 survey and the ed-elastic asymmetries

in the 32-degree configuration are nearly spot on. The ed-elastic was agreed to give the best

value for the 47-degree configuration as well. Thus for final analysis, the final spin angle

profile convoluted with the triangular density profile of the internal target gave average spin

angles listed in the Table 3.2. Maintaining and configuring the polarization and direction

proves to be one of the largest systematics in the calculation of the electric form factor of

the neutron (see Section 4.8).

3.2.5. Polarization at BLAST. The polarization of an ensemble of particles can

be defined by the respective probabilities pi to find a nucleon in a state associated with a

cross-section σi where, for deuterium, σtotal
d = σ+1 + σ0 + σ−1.

1 = p+ + p0 + p−

Pz = p+ − p−

Pzz = p+ + p− − 2p0 = 1 − 3p0 (3.9)
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The Atomic Beam Source operates in three modes of injection and the yields V+, V−, and

T− can be characterized by the state in which they were injected. Using these yields, the

vector and tensor asymmetries, AV and AT , are defined, assuming equal or normalized

yields, as

AV =
3

2
· V+ − V−
V+ + V− + T−

AT =
1

2
· V+ + V− − 2T−

V+ + V− + T−
(3.10)

At BLAST it has become customary define the vector polarization as P̃z =
√

3
2Pz and

the tensor polarization as P̃zz =
√

1
2Pzz. The reason for these definitions stems from the

normalization constants from AV and AT as Arenhövel’s formalism defines the vector and

tensor asymmetries with coefficients of
√

3
2 and

√

1
2 , respectively, rather than those that are

customary in equation 3.10, e.g. 3
2 and 1

2 . The three can be displayed by a simple schematic

triangle showing the accessible states of the deuterium target polarization as demonstrated

in Figure 3.12.

3.3. BLAST Toroid

The discrimination of momentum and charge of the particles exiting from the scat-

tering chamber and entering the detector region is provided by the Toroidal Magnetic Field.

The Toroidal field is used to prevent fringe fields from heavily affecting the Photomultiplier

Tubes (PMTs) of the Scintillators and Cerenkov Counters used in the Detector Package

discussed in Section 3.4. The field is strong enough to bend Mø ller scattered electrons

inward to prevent their entrance into the Detector package and to strongly bend positrons

outwardly enough for identification by their tight curvature.
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FIG. 3.12. A schematic triangle demonstrating the accessible states of the BLAST deu-
terium target polarization.

The BLAST Toroid consists of eight copper coils that are fixed on an aluminum

subframe azimuthally symmetric to one another around the beamline. Each coil is comprised

of 2 adjacent layers of 13 turns of hollow copper conductors of cross-sectional dimensions

1.5 × 1.5 mathrmin2. The conductors are water cooled. The power to the Toroid is

provided by a BTSPS MON 1 250/7000 C5 power supply from BRUKER and is capable

of providing 7000 A at 250 Volts. The operating current in the magnetic field was 6730 A.

At the operating current, the maximum magnetic field (which is known to preside within

the vicinity of the Drift Chambers) is approximately 0.38 T. The magnetic field of the

Toroid has been extensively mapped and the magnetic field grid is used for reconstruction

of the tracked particles within the BLAST Spectrometer. The ideal magnetic field was

initially calculated from the geometry using a Biot-Savart algorithm and separately using

a Vector Fields TOSCA simulation. A plot of the discrepancy between the Biot-Savart
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FIG. 3.13. A schematic of the BLAST Toroid and the BLAST coordinate system.

calculation and the actual measured field is shown in Figure 3.14. In Table 3.3 the early

discrepancies between calculations and the measured field values at coordinates within the

BLAST coordinate system1 can be seen. The major discrepancy between measured and

calculated values in the first row was concluded to be the failed inclusion of the target’s

holding field that would have a large effect within a region a small distance from the vertex

(~r = (0, 0, 0)) in the center of the target. Also, the earliest Biot-Savart calculations did not

account for a 7-10mm radial shift outward that occurs when powering up the Toroid. The

measured field values from a final survey with both Holding Field and BLAST Toroidal

Field on were used in actual reconstruction algorithms.

During commissioning, the performance of the photomultiplier tubes (PMTs) of the

1See Figure 3.13, +~z in direction of momentum of beam, +~y to ceiling, +~x finishes a right-handed
coordinate system, origin (~r = (0, 0, 0)) or 0cm in vertex distribution in Figure 3.9 is at the center of the
target cell
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FIG. 3.14. The Biot-Savart calculations of the magnetic field along the BLAST-x axis using
ideal locations of the BLAST coils is shown in this plot. The measured values without
the Holding Field on are also superimposed. The discrepancy between the two values is
multiplied by 10 to make the discrepancy better visible.

TABLE 3.3. At particular coordinates within the BLAST system, the magnetic field of the
Toroid is measured and calculated. The columns of calculations are listed as Ideal BS, and
Offset BS. Respectively these are Biot-Savart calculations at an ideal position of the coils
and with the coils radially offset by 8mm. The factor of 2 discrepancy between measured
and calculated field at x = 41.5cm is caused by the failure to include the holding field in
the Biot-Savart calculations.

Position (cm) By (Gauss)

X Y Z Ideal BS Offset BS Measured

41.50 0.26 28.70 147 164 292

91.50 0.20 28.70 2221 2254 2329

141.50 0.14 28.70 1663 1657 1672

191.50 0.08 28.70 577 566 548
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Cerenkov Counters (discussed later in Section 3.4.2) were being heavily affected by the

presence of a longitudinal magnetic field consequential to the proximity of the BLAST

coils. Due to the measurements of an ambient field of 100 Gauss in the region of the

PMTs, two concentric cylinders of low-carbon steel with an air gap encasing the PMTs was

implemented. A field of 10 Gauss has been shown in simulations to lower the efficiency of

a single PMT to essentially zero. During operation the efficiency was still being affected

by the BLAST Field even though the ambient field was shown to be a few Gauss. Another

solution was implemented, a layer 0.5-inch low-carbon steel was installed in front of and

behind the twelve sets of Cerenkov PMT’s. Though this was successful with respect to

increasing the efficiency of the Cerenkov Counters (CC), the affect on the BLAST field was

unknown (though assumed to be small). Though there had been discrepancies between

the calculated ep-elastic kinematics since commissioning, the possibility of the shielding

affecting the grid of magnetic field values used in reconstruction needed to be quantified.

Figure 3.15 shows the simulation of an electron track within the BLAST field cal-

culated by TOSCA and the schematic of the BLAST coils with steel shielding used for the

CC. TOSCA was used to simulate the BLAST field with and without shielding and an

electron with the same initial kinematics was propagated through the two calculated fields.

The TOSCA simulation used a step size of 1cm for the electron kinematics. Figure 3.16

shows two plots over the total displacement from the origin (x-axis). of the BLAST co-

ordinate system. The y-axis of the left plot is a calculation of the total magnitude of the

difference of the position vectors at each step in the simulation of the two electron tracks.

The y-axis of the right plot shows the magnitude of the difference in the momentum vec-

tors at each step. Since the Drift Chambers (sometimes called Wire Chambers and will be

abbreviated as WC) give the coordinates used to track particles, these deviations are only
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FIG. 3.15. Electron tracks were simulated with the same initial kinematics in two simulated
magnetic fields, the BLAST field with and without Steel Shielding in front of the Cerenkov
Photomultiplier tubes.
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FIG. 3.16. Electron tracks were simulated with the same initial kinematics in two simulated
magnetic fields, the BLAST field with and without Steel Shielding in front of the Cerenkov
Photomultiplier tubes. The left plot describes the total magnitude of the deviation of
the position vectors along the tracks. The right plot describes the total deviation of the
momentum vectors. The drift chambers are located within the region indicated. Since
the resolution of the wires within the Drift Chambers is approximately 200 microns, the
deviation of position along the tracks shows to be below the resolution for the majority of
the track’s displacement from the origin. The linear growth of the deviation in position
shows the deviation of the continued trajectory as the electrons leave the magnetic field.
The actual deviation in the momentum within the region of the Drift Chambers is less than
3% of the resolution of the Drift Chambers and is thus negligible.
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important with respect to the resolution of the WC. From Figure 3.16 we can see the region

from where we obtain information useful for tracking the charged tracks ejected from the

scattering chamber. The resolution of the wires used to track the charged particles is 200

microns and the resolution of the software’s calculation of momentum from the fitted tracks

is approximately 35 MeV. From both plots it is obvious that the tracks do not deviate from

each other considerably. The deviation of position along the tracks is below the resolution

of the sense wires for the majority of the region of the WC and then grows linearly as ex-

pected when the electrons leave the region of the field’s influence and continue along their

final trajectories. The magnitude of the deviation of the momentum vectors is completely

negligible at a maximum of 1 MeV within the region of the WC.

When plotting the fields along lines traced from the origin to the faces of the 3

Cerenkov Counters in a single sector, we can plot the ratio between the fields simulated

with and without Cerenkov PMT shielding. Figure 3.17 shows one of these ratios and

the actual superimposition of the fields. Since there is no way to ensure that TOSCA

creates equivalent meshes for two different physical situations, there is always a possibility

of fluctuations at specific points within the finite element analysis. The plot on the right

in Figure 3.17 shows these fluctuations in the region of the maximum field gradient. The

essential part of this graph is the ratio of ∼1.0 in the region of maximum field contained

within the region of the WC.

3.4. BLAST Detector

The BLAST Detector is shown in Figure 3.18. The apparatus was built on site.

The ABS enters vertically from directly above the internal target and cutting through the

BLAST coils. The BLAST Detector fills in the horizontal region on both sides of the beam
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FIG. 3.17. TOSCA was used to simulate the difference in the fields with and without Shield-
ing used for the Cerenkov Counter’s PMTs. The two simulated fields are superimposed and
plotted along the line from the origin to the face of the middle Cerenkov Counter (CC1)
on the left. The right plot shows the ratio of the values of the field. There are fluctuations
in the region of the largest field gradient which can be attributed to the difference in the
automatic meshing implemented in TOSCA. The ratio of ∼1.0 in the region of maximum
field contained within the region of the Drift Chambers is the important result used to
imply a negligible difference in reconstruction between the two physical situations.

pipe. The Spectrometer was designed to be left-right symmetric. Left-Right azimuthal

symmetry allows for coincidence measurements. The Detector is large acceptance to com-

pensate for the low luminosity of a gaseous internal target. This also has the advantage of

acceptance of out-of-plane angles.

From the view of a charged particle ejected from the scattering chamber and moving

through a single sector of the Spectrometer, it would first enter the BLAST Toroidal Field

allowing for charge discrimination. The coils have a pair of left-right symmetric Drift (Wire)

Chambers (WC) nestled in the region of maximum field. In these WCs the particle will pass

through 18 alternately crossing layers of wires slightly off vertical alignment. Upon exiting

the WC, the next set of detectors is a set of 3 Cerenkov Counters (CC) used for electron-

pion discrimination. Directly behind the CCs is a layer of 16 panels of scintillating material

used for accurate Time-Of-Flight measurements (TOF). Behind the layer of TOFs is the
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only left-right asymmetric detector array, the Neutron Counters (NC). The spin angle of the

target was predicated to always point into the left sector. The right sector was overloaded

with NCs to ensure smaller statistical uncertainties in the measurement of asymmetries in

the perpendicular kinematics sector2.

The BLAST Coordinate system is defined with +zlab as the direction of the incoming

electron beam, +ylab points directly upward toward the ceiling and +xlab points into the

left sector of the detector finishing a right-handed xyz coordinate system. The origin of the

system is located at the center of the internal target. A spherical coordinate system can be

set up in the usual way,

xlab = r sin θ cos φ, ylab = r sin θ sin φ, zlab = r cos θ (3.11)

3.4.1. Drift Chambers. The Drift Chambers (WC - Wire Chambers) are without

a doubt, the most complicated and fragile piece of the BLAST machinery. The WCs were

built on site. They are shown in Figure 3.18. A single sector contains one full set of 3

chambers. Each chamber has 2 superlayers, each consisting of 3 layers of sense wires. In

total, one sector’s WC package contains 18 layers of sense wires. The 6 superlayers have an

increasing number of cells as you go further along r from the internal target, the sequence

being 18, 19, 26, 27, 34, and finally 35 cells in the superlayer farthest from the internal

target. Each cell is a box of 3 wires with the same orientation (5◦ from vertical), the middle

wire shifted by one millimeter from a plane that can be drawn through the near and far

wires. The cells of adjacent superlayers have their respective sense wires oriented at opposite

stereo angles (±5◦) with respect to the vertical. The three Sense Wires of each cell are set

at 3570V and are surrounded by a box of Field Wires of different voltages, creating a field

2explained somewhere in theory chapter, yet to be written
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FIG. 3.18. The BLAST Detector is shown with respective subgroups clearly indicated.
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gradient within each cell (see Figure 3.19). Each Sense Wire is separated from one another

by a Guard Wire set at 2100 V and from the rest of the outer box of Field Wires by two

Guard Wires set at 1900V.

The entire WC box is filled with a mixture of helium (82.3%) and isobutane (17.7%).

Helium ionizes and isobutane quenches energetic photons resulting from high fields in the

immediate vicinity of the sense wires. The Helium gas ionizes when a charged particle

passes through the WC and the resulting electrons drift toward the sense wires. When

the drift electrons come close enough to the sense wire, the field increases dramatically

and the electrons accelerate and ionize the nearby environment providing a snowball effect

that registers a hit to the sense wire (this effect can create the energetic photons earlier

mentioned, these can cause secondary effects leading to noisy signals and thus the quenching

gas isobutane is mixed in with the Helium). The sense wire’s signal is amplified by this

cascading snowball effect. Each sense wire has a diameter of approximately 10 - 30 µm.

This cascade only happens in the region very close (∼ 75µm) from the wire, and thus the

dependence of the time of the readout is dominated by the drift velocity of the electrons

from the initial ionization.

The WCs are used to track charged particles that exit the scattering chamber. The

locations of the hits within the wire chambers are used to fit a track, a line x, that corre-

sponds to four variables where x = f(p, θ, φ, z). p is the initial momentum, θ and φ are the

polar and azimuthal angles in spherical coordinates (same as in Equation 3.11), and z is the

point at which the track intersects the axis of the beamline which is also the z-axis in the

BLAST lab coordinate system. The general algorithm for identifying the points in space

which the software fits to is demonstrated in Figure 3.21. The procedure is as follows:

1. The charged particle ionizes gas and the electrons drift toward the high voltage sense
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FIG. 3.19. A demonstration of simulated electron drift lines within the cells of adjacent
superlayers in the Drift Chambers. There are a total of 6 cells shown, the 3 sense wires lie
at the center of each cell and the guard wires completely surround each cell and divide the
sense wires from one another.

FIG. 3.20. The drift electrons time of arrival is characterized by arcs called isochrones. From
GARFIELD simulations it is shown that all electrons from ionization by charged tracks will
reach the sense wire no matter what point along the arc the track is tangent to. This overall
distance is then converted to a horizontal distance by a simple trigonometric relation with
the angle at which it crosses the axis xWC . After all three sense wires have their horizontal
distances from their respective wires, the combinatorics are computed and the combination
that quantifies as the best fit for a line, e.g. (x1 − 0.5) − 2(x2 + 0.5) + (x3 − 0.5) ∼ 0, is
determined to be the true location of the track. This combination of 3 points is called a
stub.
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FIG. 3.21. Drift Chamber hits are converted into charged particle tracks.

wires. The time for this drift is calculated by a function called the time-to-distance

relation. GARFIELD, a program for gaseous detectors from CERN, simulates the

drifting electrons from points of origin and a sixth order polynomial is fit to results,

t = f(x). The simulated paths of the drifting electrons are shown in Figure 3.19.

The time it takes for the signal to drift to the sense wire is converted into a distance

by taking the inverse of the 6th order polynomial. This distance is converted into a

horizontal distance along xWC axis, indicated in Figure 3.20.

2. When three hits are recorded in the three sense wires comprising a single cell, we are

left with a combinatorics problem. The wire has no way of sensing from which side

the ionization came. For each possibility, the slight shift of the middle wire allows

us to quantify a particular combination of three points and its departure from a line.
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This is shown in Figure 3.20. The wires are each offset by d = 0.5mm from the center

line of the cell. The relation,

χ = (x1 ∓ d) − 2(x2 ± d) + (x3 ∓ d) = 0 (3.12)

would define a perfect line (the addition or subtraction of the offset is dependent on

which distance is being used, see (b) of Figure 3.21). Combinations of all possible sides

and distances are computed alternating the sign of the center offset where appropriate.

The combination in which χ ∼ 0 is awarded the true location of the track and the 3

point combination is fit with a line called a stub.

3. Since these 3 wires run from the upper face to the lower face of the wire chambers

at the same stereo angle, the stub defines a 2D plane. Adjacent superlayers have the

wires of their respective cells tilted in opposite directions with respect to the vertical.

When adjacent superlayers detect hits within cells and stubs are formed, the resultant

2D planes coinciding with the stubs are shown to intersect along a line in 3D space.

This is illustrated in (c) of Figure 3.21. The resultant line in 3D space is called a

segment.

4. In each sector, there are 3 groups of 2 adjacent superlayers. This allows for the

formation of 3 separate segments in 3D space when the charged particle leaves the

appropriate number of signals in the WC. These 3 segments are now fit to a curve.

There is also the possibility that 2 charged particles peruse the chambers in a single

event. In such a case, the combination of segments can also be a combinatorics

problem as indicated in (d) of Figure 3.21. The fitted tracks in this step are traced

back to the axis of the beamline and to the face of a TOF were one to register a

hit. This final curve is the function x = f(p, θ, φ, z) in 4D space. In this step, the
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FIG. 3.22. For stubs recorded upstream of all three wires, we can plot the result of Equa-
tion 3.12 and fit for the resolution of the sense wires δx.

function is fit to the actual locations individually measured by each sense wire (18

hits in a perfect track, 3 wires per superlayer in 6 superlayers) and allocated into

3D space by the combinatorics of the previous steps. The fitting procedure uses

a modified Newton-Raphson method where the 18 points are fit by altering the 4

initial parameters and walking the resultant track through the magnetic field grid

taken from survey. The quality of the fit is extracted from a simple χ2 function,

χ2 =
∑18

i=1 f(p, θ, φ, z) − xi/δx. δx is ∼200 microns (see Figure 3.22) and can be

shown by fitting the results of Equation 3.12 to a Gaussian for a single stub-type3.

From χ it is easily shown that δx = σχ/
√

6.

The 4 parameters p, θ, φ, which correspond to the initial momentum vector of the

charged particle and z the point at which it exited the target have resolutions listed in

3The types of stubs can be classified by the side of the sense wire that the final track is determined to
pass. Values s1, s2, s3 are assigned to each sense wire. All 3 sense wires are assigned a value of 0 if the track
passes upstream of the sense wire. Wire 1, 2, and 3 are assigned values of 1, 2, and 4 respectively if the
track passes on the downstream side of the sense wire. By adding these values stubtype = s1 +s2 +s3, it can
be seen that a total value of zero puts the track on the upstream side of the wires. A value of 1 would give
a track passing on the downstream side of wire 1, crossing the middle plane of the cell and passing on the
upstream side of wires 2 and 3. From this system it can be shown that stub-types 0, 1, 3, and 7 occur the
most often with negative particles, stub-types 4 and 6 are added to the list for positive particles, and types
2 and 5 should almost never occur, especially because type 5 is physically impossible due to the upstream
shift of the middle sense wire.
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TABLE 3.4. The resolutions with which the reconstruction software fits the Drift Chamber
information from tracked events.

Variable σ

p 35 MeV

θ 0.5◦

φ 1◦

z 1cm

Table 3.4 (see Section 4.8 for calculations).

Lastly, the Drift Chambers were not only useful to reconstruct the track followed

by the charged particles in this experiment. The chambers provided a continuous charged

particle veto. The Time-of-Flight Scintillator array are > 99% efficient but do not provide

a continuous region of coverage. Each layer of wires within the Drift Chambers has been

measured at 98% efficient in detecting ionization from passing charged particles. Using

18 layers of wires, the chance that a charged particle would not be detected is on the

order of 0.0218, which you can guess is a mighty small probability. This measurement of

quasi-elastic electroscattered neutrons from a polarized deuterium target has nearly zero

proton contamination due to the continuous region of the Drift Chambers. I would highly

recommend the use of even a rudimentary ionization chamber for exclusive neutron detection

in all future neutron experiments.

3.4.2. Cerenkov Counters. The Cerenkov Counters (CCs) provide the primary

electron/pion particle identification for BLAST. Arizona State University was made re-

sponsible for the design and construction and operation of the CCs. The main design

considerations are: a uniform, high (≥ 90%) electron detection efficiency; the CCs should

be compact and minimize energy loss, and they should operate in a region with high (∼100
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G) longitudinal magnetic fields. The final design of the CCs was adopted as an array of

counters having silica aerogel as a radiator with indices of refraction n = 1.020 for angles

forward of 40◦ and n = 1.030 for angles backward of 40◦. Aerogel provides a very compact

detector in the confined space of BLAST. This arrangement is good enough to discriminate

pions up to at least 700 MeV/c. Each counter is equipped with a large single diffusion box

to collect light into properly arranged photomultiplier tubes.

A complete conceptual design of a CC is shown in Figure 3.23. The front and rear

covers of the boxes themselves are constructed of an extremely light-weight honeycomb

material sandwiched between 1 mm thick Aluminum panels as the outer casing. The side

panels were constructed of singular 8-inch aluminum plates. The interior of the boxes is

covered with a diffusely reflective coating, Spectraflect designed by LabSphere, Inc. Spec-

traflect is tested to have 96%-98% reflectivity at 600nm wavelengths. Two identical sets of

four counters were constructed, one for each sector of BLAST. Each set consists of a counter

at forward angles viewed by six Photomultiplier Tubes (PMTs) and subtending 20◦-35◦, a

counter viewed by eight PMTs and subtending 35◦-50◦, and two counters each viewed by

12 PMTs and subtending 50◦-80◦. In the final configuration, the rearmost CC was pulled

from the region of the 65◦-80◦ Time-of-Flight Scintillators and placed in front of a subset

of the Back Angle Time-of-Flight Scintillators (BATS) for electron-pion discrimination at

angles ≥ 95◦. All boxes cover the entire azimuthal acceptance of the respective BLAST

sector and their dimensions vary slightly due to the magnetic coil shape. The dimensions

of the largest boxes were 100 cm wide, 150 cm height, and 19 cm deep. Each counter is fed

with a laser pulse for timing and gain monitoring.

The conceptual design of a BLAST CC is shown in Figure 3.23. The aerogel was

purchased from Matsushita Electric Works Ltd. The optical quality of aerogel has signif-
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FIG. 3.23. Conceptual design specifications for a Cerenkov Counter used at BLAST.
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icantly improved in recent years. The aerogel comes in tiles of approximately 11 cm by

11 cm with an average thickness of 1 cm. The tiles are extremely fragile and great care is

taken to avoid chipping the edges. The largest counter boxes contain approximately 580

tiles. The tiles were mounted on top of each other and separated into rows by a stretched,

thin mylar foil. Each row was also covered by a similar mylar strip to hold the aerogel in

place when the counter is configured in its vertical position. To properly fit a row of aerogel

it was occasionally necessary to cut the ending tiles. A common razor was sufficient for

the task. The initial estimation of the thickness of aerogel necessary to extract an optimal

Cerenkov light yield was gauged at 15 cm. The back-angle CCs, instead, support 5 cm of

aerogel and the forward-angle CCs support 7 cm necessitated by the slightly lower index of

refraction.

The PMTs used in the CCs are 5-inch diameter fast tubes (type XP4500B, Photonis).

One challenge to our design is the presence of a longitudinal magnetic field within the region

of our photomultiplier tubes (PMTs). As expected, preliminary measurements had resulted

in a field of 100 gauss at the proposed location of the PMTs of the CCs when the BLAST

Toroid was on. At 10 gauss the overall efficiency of one photomultiplier tube can be reduced

to effectively zero. An initial solution was implemented to install two concentric cylinders of

low-carbon steel with an air gap encasing our PMTs as shown in Figure 3.24. Modeling this

new arrangement with TOSCA, the magnetic field in the region of the PMTs proved to be

reduced to a few gauss. Low carbon steel was chosen as a shield because µ-metal shielding

saturates at flux densities of more than a few milliteslas. The shielding needs to extend

beyond the PMT window for at least one diameter. The configuration shown in Figure 3.24

was modeled using the computer code OPERA-3d and it was found that the configuration

of a 10mm thick inner tube with a 75mm radius, surrounded by a 6mm thick outer tube
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FIG. 3.24. A schematic of the concentric cylinders used for shielding the Cerenkov Counters’
Photomultiplier Tubes. An aluminum cone was also added to minimize the loss of photons.
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with an 88mm radius was the best configuration in order to cancel the longitudinal BLAST

fields. Actual dimensions of the shielding tubes were slightly different to accommodate to

commercially available tubes.

A single counter with the dimensions of the largest boxes that would be installed at

BLAST was first constructed as a prototype. This unit was tested with cosmic rays and

with the electron beam in conjunction with other BLAST detector elements. During the

tests the prototype counter performed as expected although it was not possible to test it

with the full BLAST magnetic field. The construction of the entire array proceeded with

no significant changes from the prototype.

Initially the above design was modeled using the simulation technique used by

Higinbotham[115]. The corresponding computer code predicts the photoelectron signal,

the uniformity of the signal, the average number of PMTs which trigger per event, and

the timing resolution of the detector. Again, the larger Cerenkov box was modeled as the

prototype and it was found that the CC should produce an average signal of nearly 4.5

photoelectrons in the absence of an external magnetic field[115, 116].

The information from the simulation, namely the photoelectron signal and the aver-

age number of PMTs which trigger per event, were used to perform a Monte Carlo simulation

of the ADC spectrum for a particular CC. A Poisson event generator[117] was used to sim-

ulate the number of photoelectrons that pass from the outer photocathode to the successive

dynodes, positively charged secondary-emission electrodes. The electrons are multiplied

throughout the dynode stages in a linearly focusing PMT. The Poisson distributed signal

takes into account how fluctuations around the mean diminish from the first dynode to the
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FIG. 3.25. The expected ADC signal from a Cerenkov Counter with four PMTs producing a
single photoelectron. This is a Monte Carlo simulation using a Poisson generating function.

next. This can be expressed by the equation,

σi =



PE ·
m
∏

j=1

gj





1
2

,m = i − 1. (3.13)

where σi is the fluctuation in the distribution of the number of electrons at the ith stage,

PE is the mean of the photoelectron distribution and gj ’s are the gains of the stages which

precede the ith stage. The ADC spectrum for a particular CC was obtained by doing

an event by event sum of the individual PMT ADCs that trigger an event. A pedestal-

subtracted ADC spectrum produced by the Monte Carlo for a multiplicity of 4 is shown in

Figure 3.25.

The ADC spectrum of the Monte Carlo simulated ADC is scaled to a Poisson function

that gives an approximate number of photoelectrons µ[114].

y = (Const.) × µx exp−µ

Γ[x + 1]
, where Γ(x) =

∫ ∞

0
tx−1 exp−tdt (3.14)

y is the number of counts per channel, x is the ADC channel. The fit to the Monte Carlo in

Figure 3.25 with a fitted value of 2.7 for µ is reasonably accurate for the input multiplicity
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and allows a relative expectancy for the CCs within the BLAST detector and a variable by

which we can gauge the performance of the CCs within the BLAST package.

The performance of the CCs have been obtained during the on-going measurements

with the BLAST detector. By using elastic scattering from hydrogen we have determined

the respective efficiencies of the CCs. The elastic events were selected based on cuts from

the reconstructed kinematic variables including coplanarity and timing cuts from the Time-

of-Flight scintillators (TOFs) that are nestled directly behind the CCs. There are approxi-

mately four TOFs behind each CC. The CCs are numbered 0, 1, and 2 over increasing polar

angles from the target. Behind CC0 are TOFs 0, 1, 2, and 3. Behind CC1 are TOFs 4-7,

and behind CC2 are TOFs 8-11. The two central TOFs that are completely shadowed by

the CCs because they are centered behind the CCs are used for the efficiency measurements.

The TOFs are discussed in the following Section 3.4.3.

Since commissioning, the efficiency of the detectors has been routinely monitored

in order to optimize the voltages of the PMTs and to scrutinize the performance of the

detectors relative to the magnetic field of the BLAST Toroid. From the measured ADC

signal and the Monte Carlo simulation, a general idea of the strength of our signal was

evident. While in commissioning we had noticed a strong difference between the widths

of our ADC signals when running the experiment with and without the BLAST toroid

operating. Despite the concentric cylinders of iron shielding around each PMT, residual

fields of 3-5 Gauss were found when the entire array of CCs was operated with the full

magnetic field of BLAST. This resulted in a significant loss of efficiency for most counters.

Taking notice that the magnetic field had been affecting our PMT tubes and the overall

efficiency of the CC signal, a layer of 0.5-inch low carbon steel was used to shield the PMTs

of the CCs forward of the polar angle 40◦ and two layers to shield the PMTs of the CCs
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FIG. 3.26. This Cerenkov Counter’s analog-to-digital (ADC) signal is plotted before and
after two layers of low carbon steel magnetic shielding were attached to the front and back
of the frame that held the PMTs in place. The fit is done with Equation 3.14 Counter
used at BLAST. The number of photoelectrons µ can be seen to have doubled when further
shielding was added.

backward of the polar angle 40◦. These layers of steel shielding are in addition to the

cylindrical containers previously mentioned and shown in Figure 3.24.

Referring to Equation 3.14, a higher photoelectron yield µ means a stronger signal,

a greater width of our ADC spectrum, and a greater overall efficiency of the CC. In Fig-

ure 3.26, we have two separate plots of one CC’s ADC distribution before the installation of

additional shielding and after. Our current efficiencies of the respective Cerenkov detectors

are listed below in Table 3.5.

We have analyzed data for three Cerenkov counters per BLAST sector. All quoted

efficiencies are after all magnetic shielding had been installed. The last Cerenkov box in

each sector was moved to backward angles, outside the acceptance of the drift chambers and

TOFs, to allow for a measurement of backscattered electrons from elastic electron-deuteron

scattering. There are four additional scintillator bars in each sector that are shadowed by

those back angle CCs. Total efficiency results for the three CCs covering the scintillators

within the drift chamber acceptance in both left and right sectors of BLAST are shown in

Table 3.5. Edge effects are neglected by only requiring the center two scintillators shadowed
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FIG. 3.27. The efficiency of each Cerenkov Counter over the BLAST Ω acceptance. The
axes are (assuming right-handed with z -axis pointing vertical) x:φ, y:θ, and z:efficiency. No
holes in efficiency of each Cerenkov Counter are present over the ∼400 bins shown in each
plot.

by each CC. Since each scintillator is equipped with a PMT at each end, the efficiency has

also been studied as a function of position along each scintillator as well as the polar angle

along the BLAST acceptance. The respective pion/electron discrimination efficiencies over

the solid angle covered by the two central scintillators shadowed by each CC are shown in

Figure 3.27.

The ADC distributions of each Cerenkov counter have been fitted with the Poisson

function discussed in the previous section. A typical result for one of the large Cerenkov

boxes after shielding is shown on the right in Figure 3.26. The measured ADC is very

similar to that of Figure 3.25 indicating a very good agreement between simulation and

experimental measurement. The mean of the fitting function yields µ = 3.4 detected pho-

toelectrons per event in a Cerenkov counter which translates into a detection efficiency of

95%, well in agreement with the Monte Carlo results.
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TABLE 3.5. Respective efficiencies of the 6 CCs used in production running at BLAST.
1.42 M electron-proton elastic events were used. “∗” is indicated to note that the entire
array of 11 Time-Of-Flight Scintillators that are mostly shadowed behind the Cerenkov
Counters were used for “TOTAL” efficiencies

Left Sector CC Efficiency % Right Sector CC Efficiency %

Forward Angle 0.886 ± 0.006 Forward Angle 0.883 ± 0.006

Middle 0.854 ± 0.009 Middle 0.944 ± 0.014

Back Angle 0.911 ± 0.024 Back Angle 0.935 ± 0.028

LEFT TOTAL∗ 0.878 ± 0.003 RIGHT TOTAL∗ 0.894 ± 0.003

The promise of triggering on a Cerenkov signal is evident in the two plots in Fig-

ure 3.28. A colleague studying the quasi-elastic electroscattering on Deuterium has noted

that cutting his data on a CC signal acts like a “magic bullet” against his background.

3.4.3. Time-Of-Flight Scintillators. The long, thin detectors in Figure 3.18 are

the Time-of-Flight Scintillators (TOFs). The TOFs were constructed and tested on site by

the collaborators from the University of New Hampshire. The TOFs are made from Bicron

BC-408 organic plastic scintillating material Polyvinyltoluene. This material was chosen

for its fast response time (≈ 0.9 ns) and long attenuation length (≈ 210 cm), as plastic it

is also structurally sound. Each sector contains an array of 16 TOFs. The farthest forward

four bars are 119.38 cm high, 15.24 cm wide, and 2.54 cm thick. The remaining 12 bars are

180.0 cm high, 26.2 cm wide, and 2.54 cm thick. There are also four Back Angle Time-of-

Flight Scintillators (BATS) just outside of the region of drift chamber coverage, 90◦-120◦.

Each is surrounded by a 2 mm thick lead foil which attenuates X-rays from the target and

prevents back-scattered radiation that could potentially misidentify electrons by firing the

Cerenkov detector in front of the TOF. The foil is absent from the four most back angle

TOFs to improve sensitivity to low energy elastically scattered deuterons.
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FIG. 3.28. The x and y axes are the polar angles of the outgoing particles entering the right
and left sectors, respectively, of the BLAST detector. Tracking reconstructs the polar angle
of particles exiting from electron scattering on a Hydrogen target. On the left, we notice
the elastic scattering polar angle distribution deeply embedded in an overall background of,
as yet, unidentifiable events. On the right we require that our Cerenkov counter registers
a signal, i.e. we require an electron to be detected, and as a result, our noise significantly
decreases such that our elastic electron-proton scattering distribution lies clearly in the
foreground.
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The readout for the TOFs is done at both ends of the scintillating bar. Lucite light

guides couple the TOF to three inch diameter Electron Tubes photomultiplier tubes (model

99822B02) which use the Lucite guides to position the PMTs at a further distance from

the BLAST field and to ensure that any nearby fringe fields are roughly perpendicular to

the PMTs. The PMTs are also surrounded by a wrapping of highly permeable mu-metal

magnetic shielding to further minimize effects of the BLAST field. The base electronics unit

for each PMT is an Electron Tubes model Model EBA-01 which is an actively stabilized

voltage divider which supplies the high-voltage for the PMT’s operation and the readout

for the data acquisition system (DAQ).

A single sector’s PMTs’ signals are fed to two LeCroy Model 3420 constant-fraction

discriminators (CFD), one for the 16 PMTs along the top of the TOF array and one for

the 16 PMTs along the bottom. The CFD provides timing that is independent of gain and

pulse signal rise time. This standard is extremely important because the TOFs act as the

trigger for the DAQ. The logic signals from each CFD are passed along a series of logic gates

where top and bottom PMT signals are ANDed together. This coincidence requirement of

a top AND bottom PMT of a single scintillator creates a much cleaner event stream and

eliminates many counterfeit signals.

The effect of a pair of PMTs covering the ends of each individual TOF provide rough

position mapping along the length of the TOF by recording the time difference, but the

timing signal that is measured independent of the location along the TOF comes from a

meantimer that is fed by the output of the coincidence logic. This allows for equalization of

signal timing between different PMTs of a single scintillator. The meantime gives the event

timing signal that is fed to the memory lookup units (MLU) and initiates the trigger for the

DAQ (To be later described in Section 3.5). The resolution of the timing from the TOFs
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FIG. 3.29. The Calibration of the offsets of the Time-Of-Flight Scintillators can be described
using a simple demonstration of four TOFs. Cosmic rays travel at roughly the speed of light.
All four distances shown on this illustration d0

0, d
0
15, d

15
0 , and d15

15, are known and the time
it takes a particle moving at c to traverse these respective distances is easily calculated
∆tij = c/di

j . The readout of each of the 32 TOFs in the BLAST array gives a TDC signal
corresponding to the time of a single event. Four TOFs will be used in this example, L0,
L15, R0 and R15. Each of these has a characteristic offset that separates them from a
reference time (a timed flasher signal or even the signal of a TOF can be taken as a fiducial
reference). The time difference between signals when a cosmic ray passes through any of
these pairs can be written: (ti + offseti) − (tj + offsetj) = c/di

j + (offseti − offsetj). These
four combinations of paddles will obviously give four equations of this form and there are
exactly four unknowns corresponding to the unknown offsets. Notice that we can include
the combinations of L0 and L15 and R0 and R15 which gives us two more equations with
no added unknowns. For 32 TOFs the situation is over determined since, under ideal
conditions, 32 TOFs have 32 unknown offsets yet can be combined to make
32(32−1)

2 = 496 combinations or equations.

has been determined by the method of Giles[118] to be 350 ps FWHM (BLAST design specs

called for 500ps).

Although timing is the primary purpose of the TOFs, the energy deposited within

a scintillator, above a certain minimum, is directly proportional to the number of photons

emitted. In this sense they can separate minimum ionizing particles such as electrons

from slow moving deuterons which deposit significant amounts of energy upon entering the

scintillating plastic.
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3.4.4. Neutron Counters. The Neutron Counters (NCs) are on the outer edges,

beyond all other detectors. They are the outermost detectors from the internal target in

Figure 3.18 and delineated more clearly in Figure 3.30. Asymmetrically configuring the

NC array was motivated by the dependence of the asymmetries from quasi-elastic electron

scattering from deuterium on the interference of the electric and magnetic form factors of

the neutron (see Section 2.4.1). All the NCs on both sides are located behind the Time-Of-

Flight Scintillators.

In both sectors of BLAST is a similar array of eight horizontal bars of scintillators

called the OHIO Walls. The two sets of eight bars were built by Jacobo Rapaport from

Ohio University. The final dimensions of these counters were fixed at 400 cm long by 22.9

cm high by 10 cm deep. The polar angle coverage of the parallel kinematics sector was

set from approximately 40◦-80◦ during the production data runs from 2004 and was shifted

forward from 30◦-75◦ during 2005 production data.

In the perpendicular kinematics sector, there are five arrays of NCs. One is the

Ohio Wall mentioned and described in the previous sector. Two arrays of 14 wedge-shaped

Large Angle Detection Scintillators (LADS) run vertically and are situated in between the

Ohio Wall and the TOFs. These LADS form a solid wall by alternating the direction of

the wedge and they are three meters in length and 20 cm thick (LADS20). Another two

arrays of 14 LADS are in the more forward angle direction and are placed one in front of

the other. These are wedge-shaped, 3 meters long and 15 cm thick (LADS15). Though

there are small acceptance holes, approximately 30 cm of scintillating material are used

throughout the perpendicular kinematics sector for neutron detection.

Since neutrons are neutral particles, there is no information that can be derived

from the detection of a neutron other than the exact timing of a specific signal within
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FIG. 3.30. A bird’s eye view of a cross section of the detectors at the height of the target.
The overloaded Neutron Detectors in the perpendicular kinematics sector are clearly visible.
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FIG. 3.31. Ω acceptance of the LADS and OHIO Wall Neutron Counters in the perpendic-
ular kinematics sector.

one or more of the NCs. Thus, the timing of the NCs can be qualified as the only signal

appropriate to the neutron’s kinematics since the magnetic field does not bend a neutral

particle’s trajectory and the velocity can be derived directly from the Time Of Flight which

is attained from the PMTs’ timing. Since the Ohio Walls run horizontally, the azimuthal

angle at which the neutron is detected corresponds directly to the detector that measures

a signal and thus makes up a discrete system of eight phi angles corresponding to each of

the eight bars in the Ohio Walls. Figure 3.31 shows the solid angle acceptance of the right

sector Ohio Walls, discrete in the azimuth and continuous along the polar angle. The LADS

run vertically. Since there are 28 bars directly in front of the Ohio Walls and 28 bars at

forward angles, the bars must obviously correspond to 54 distinct polar angles and run a

continuous acceptance along the azimuth. Figure 3.31 also shows the solid angle acceptance

of the LADS.

It is very simple to characterize the main quantities necessary for the calibration of

NC timing. One of these quantities is the overall mean time of particle detection as the

sum of the TDCs from a single scintillator bar’s respective PMTs located at opposite ends:

t =
TDC1 + TDC2

2r
(3.15)
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where r = (TDC channels)/ns conversion. The other quantity is the relative longitudinal

position along a bar which is characterized by the equation:

x =
TDC1 − TDC2 − ∆

2η(n
c + ξ)

(3.16)

where ∆ is the position offset, n = 1.58 is the index of refraction within the bar, c = 30cm/ns

is the speed of light, and ξ is the rise time position dependence. These equations do not

concern themselves with the offsets intrinsic to the detector’s electronics and the relative

performance of each PMT and electronics base. Thus, two variables need be inserted into

these two equations, namely the offsets for TDC1 and TDC2 which will be called TDC0
1

and TDC0
2 and added to their respective PMT’s timing signal. These non-negligible hard

offsets are calculated in exactly the same way as described in Figure 3.29, using cosmic rays

relative to combinations of NCs with TOFs. On top of these static offsets, a number of

additional measures were employed to overcome further difficulties that became apparent

through commissioning the respective detectors as well as monitoring their performance

over the course of the production data.

The NCs record their timing and deposited energy measurements from leading edge

discriminators (LEDs) and not constant fraction discriminators (CFDs) as is the case with

the Time-Of-Flight Scintillators. CFDs are not subject to mistiming as the front edge of the

PMT signal becomes weaker and rises less sharply, they are designed to produce accurate

timing information from analog signals of varying heights but the same rise time. The LED

is the simpler of the two types of discriminators. Given an input pulse, the LED produces an

output pulse at the time when the input pulse crosses a given threshold voltage sometimes

called a “pedestal”. This, however, causes a problem in situations where the timing is

important. If the amplitude of the incoming pulse is changed, but the rise time remains

the same, a sort of “time walk” or “walk effect” occurs (Figure 3.32); an input pulse with
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smaller amplitude but with the same rise time as a larger pulse will cross the threshold at

a later time. Thus, the timing of the output pulse is shifted by this change in amplitude.

In addition to the timing offset that arises from the walk effect, the overall efficiency for

detecting low energy neutrons is very sensitive to the pedestals assigned to each PMT. This,

in turn, creates a competing effect. We would like to minimize the walk effect by increasing

the gain on our PMTs and requiring a higher pedestal, yet raising the pedestal will lower

our neutron detection efficiency and relegate a large number of slower neutrons into the

background, thus decreasing the statistics of this already statistics-dominated measurement

of the neutron’s form factor. We must correct for the walk effect.

To correct the walk effect and to simultaneously extract the exact pedestals of each

PMT, a fit was exacted to the mean time TDC vs. ADC distribution of each bar of each NC

array. The data for the fit was provided by using a series of flasher signals and attenuating

the power over the course of the measurement. Plots of the data from one 14 bar array

in the LADS is shown in Figure 3.32. The fit for the walk effect uses three parameters,

one of which is the pedestal. The equation includes terms such as the hard offset TDCi
0 of

the ith PMT (calculated using Cosmic events) and, if calibrating from actual neutron data,

the actual difference in the Time Of Flight of neutrons and electrons r(tn − te) where r=

(number of TDC channels)/ns:

TDCi = TDCi
0 +

pi
1

√

ADCi − ADCi
ped − pi

2

+ r(tn − te) (3.17)

where the data gives TDCi and ADCi and we fit for the pedestal ADCi
ped, and the param-

eters that fine-tune the rise pi
1 and vertical asymptote pi

2 of the ith PMT. This fit is done

for all Neutron Counter PMTs and used to accurately calculate the Time Of Flight of the

neutron tn. tn is the Time of Flight, the time difference from Equation 3.16 (now including

parameterized walk corrections for the respective TDCs in the equation), and the actual



106

FIG. 3.32. The flasher signal is attenuated over several runs in order to demonstrate the
walk effect within the Neutron Counters’ photomultiplier tubes. The top four plots show
the raw data while the bottom four plots show a fit to the same four plots but zoomed
in to demonstrate the walk effect in greater detail. The fit utilized is demonstrated in
Equation 3.17.

detector which records a hit provide all the information for the neutron’s kinematics, i.e.

time of flight, distance traveled, and trajectory.

Once these corrections were accounted for, production running began and flasher

signals continued to monitor the TDC time offsets and the ADC pedestals. It became

apparent during production running, that these hard offsets were not constant. Due to

unknown effects, there have been up to 5 nanosecond jumps in the TDC offsets and jumps

of more than 500 channels in the ADCs which would relegate our previous walk effect

fits as useless (see Figure 3.33). These jumps were measured and tabulated run by run.

The subtraction of all random walking of the timing offsets have been subtracted and

implemented into the final dataset used in this analysis.

To qualify the final results of the neutron timing calibration, reconstructed kinemat-

ics from data was analyzed and used to calculate expected time of flight measurements,

tcalc
n , and to compare them to the actual readings from neutron detectors, tn. At this point

there were still discrepancies though they were smaller than the resolution of the timing of



107

FIG. 3.33. During production running, flasher signals were used to monitor the performance
of single photomultiplier tubes. The top four plots show the ADC pedestals vs. run number
of the top PMTs of four adjacent pads within a LADS array of Neutron Counters. It is
obvious that there are extreme jumps of up to 500 channels and some sequences of runs that
seem to display complete randomness over nearly 1000 channels. The bottom four plots
demonstrate the monitoring of time offsets. At 50 picoseconds/channel, a change in the
timing offset of 100 channels corresponds to 5 ns. A relativistic neutron with an extra five
nanoseconds of flight time over the five meters between a neutron counter and the target
would give a neutron with true momentum of 400 MeV/c a final momentum of 375 MeV/c.
Considering that there are variations in the offsets of almost 20 nanoseconds, failure to
maintain a database of these fluctuations could take nearly 200 MeV from our fastest recoil
neutrons and heavily contaminate the data.
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FIG. 3.34. The plots here demonstrate the difference between the calculated neutron time
of flight, tcalc

n (pe, θe, φe, θn, φn,Mm = Mp) and the corrected time of flight, i.e. tcalc
n − tn.

All distributions shown here are for the individual bars within one of the two 20 cm LADS
arrays. The mean of the Gaussian fits shown are within two tenths of a nanosecond from
zero.

the Neutron Counters. The corrections were calculated as hard offsets per Neutron Bar.

Two iterations of these offsets had to be calculated in order to reduce the systematic errors

in the time of flight of the neutron in order to make the measured time of flight match

the expected time of flight. Figure 3.34 shows the final distribution of tcalc
n − tn of one set

of the LADS20s. Gaussians are fit to each distribution demonstrating the success of the

calibration of the neutron timing.
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3.5. BLAST Trigger and the Data Acquisition System

The BLAST trigger is constructed from an emitter coupled logic (ECL) discrimina-

tor and several layers of logic modules constructed by LeCroy. The modules reside in two

Computer Automated Measurement And Control (CAMAC) crates, both of which are con-

trolled by one Creative Electronic Systems (CES) CBD-8210 Versa Module Europa (VME)

card. One crate is dedicated to each sector of BLAST’s detector system electronics, with

two-sector correlations being computed in the right sector’s crate. Within each crate, the

logic modules are arranged by detector type (TOF, NC, CC, WC) in groups of two to five

modules.

For a simplification of the description of the trigger processing, it can be divided

into three basic parts. The first part of the trigger converts the analog signals of the

detectors into digital logic signals that indicate specific information about which detector

fired. The second part takes these detector signals, combines them into specific arrays of

detector type, and passes them to software controllable Memory Lookup Units (MLUs).

The MLUs process correlations between different detector elements within their respective

sectors. The third and final logic computation takes the signals from the two sector MLUs

and sends gate and start signals to the digitization electronics. It also writes a trigger type

tag (see Table 3.6) to each event as an indicator of the specific combination of detectors

that recorded hits. This allows for much quicker processing in later analysis.

The Time-Of-Flight scintillators are used to commence the trigger signal. As obvious

from Table 3.6, the TOFs are included in all trigger types including the Flasher Monitor

which fires all the detectors simultaneously for offset and pedestal monitoring. Two Con-

stant Fraction Discriminators are used for the PMTs on the top and bottom of the TOFs,
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TABLE 3.6. Trigger Types and their description. TOF is a Time-Of-Flight scintillator,
NC is a Neutron Counter, CC is a Cerenkov Counter, BATS is a Back Angle Time-of-flight
Scintillator. See Figure 3.18 or Figure 3.30.

Trigger Prescale Description

1 1 TOF coincidence (Charged Coincidence - ep, e’p, e’π+, . . .)

2 1 TOF & NC coincidence (Charge-Neutral Coincidence - e’n, e’πo, . . .

3 10 At Least two TOFs in One Sector with CC

4 100 At Least two TOFs in One Sector

5 1 TOF and BATS coincidence

6 1000 Single Back Angle TOF (TOF12-15)

7 3 Single TOF with CC

8 1 Flasher Monitor

respectively. From each of these CFDs, a set of outputs goes to TDCs and scalers for visu-

alization. Another set of outputs is sent to a logic module that ANDs together the signals

from the top and bottom PMTs of a single TOF in order to eliminate any sporadic misfiring.

From this coincidence logic, the output is sent for time equalization and the output of this

mean time is numbered with the respective TOF that fired and sent to the Sector Logic.

An analogous process is used for the Neutron Counters except that the Neutron

Counters do not have the privilege of CFDs. The NCs are also not the initiator of the event

signal and are thus relegated to the sector logic to await the proper allocated window for a

TOF signal in order to be recorded as a proper event.

The Cerenkov Counters are allocated a similar role to the NCs in respect to the fact

that they do not initiate a trigger type. The only other major difference is that the signals

from the six or eight PMTs that detect Cerenkov radiated photons are added since it is

very possible that only a single photon enters the photocathode of a PMT.

The sector MLUs which receive the pulses from a single sector’s detectors send a

total of six output signals to the cross-sector MLU. This allows for 26 possible trigger

conditions which is more than sufficient for this experiment. The cross-sector MLU also has



111

several test/calibration inputs which allow for calibration and testing to take place without

disturbing the trigger setup for an experiment.

Lastly, a JLab trigger supervisor receives the cross-sector MLU output, prescales it4,

and outputs gates and starts to the digitization electronics. At the beam energy used in

BLAST there are no hadron showers and there is a relatively low rate of physical processes.

Still, high background rates in some trigger types can cause the data acquisition rate to

exceed the maximum rate able to be handled by the system. This can result in significant

deadtime. Deadtime is the period of time in which the data acquisition cannot respond

to incoming events within the data stream and which are consequently lost. To limit the

computer deadtime, less important triggers with high background were prescaled.

The software used for controlling the data acquisition system consists of the CEBAF

Online Data Acquisition (CODA) program from JLab and a modest compilation of shell

scripts used for communicating with the hardware and for visualizing the raw scalers of the

detectors. CODA is used for the BLAST detector and includes a graphical user interface,

Runcontrol, which allows its users not only to start and stop runs but also to set run

parameters. There are three main parts which make up the Coda program: ROCs, EB

and Coda itself. The Read Out Controllers (ROCs) read out the data as processed by the

MLUs. The Event Builder (EB) then compiles and sorts the data fragments from the ROCs

as well as EPICS and scaler data and combines the data into an event.5 Event Transport

4The respective prescales are listed by trigger type in Table 3.6. The utility of the prescale is to limit
the time spent recording data from physics signals that are of low priority or of overwhelming statistics that
saturate the data stream. Taking notice of the prescale of 1000 for the trigger type 6, a positron shower
has been shown to be coming from the region of the collimator since the beginning of this experiment. The
magnetic field of the Toroid is set to bend positive particles outward. The positrons are low momentum,
are not in coincidence with any specific particle and produce no prioritized physics results. The prescale of
1000 allows only 1 in 1000 signals that correspond to this trigger logic to be recorded in the data stream.

5The ROCs produce about 500 physics events per second. The EPICS (Experimental Physics and Indus-
trial Control System) are slow controls used to control target gas flow, wire chamber gas, the ABS, and the
high voltage system for the detectors. EPICS events are recorded once per second. Scaler events are also
recorded once per second and are raw rates used to visualize the ongoing performance of the detectors. The
physics events from the ROCs are sent to ET in blocks along with scalers and EPICS which are not neces-
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FIG. 3.35. A schematic of the BLAST Trigger electronics. Most of the four digit number
correspond to LeCroy Model numbers of the individual units employed.
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(ET) then takes these compiled events from EB, and caServer sends them to the Event

Recorder (ER). visual scal is a shell script for scalers visualization and is run to monitor

the performance of all individual PMTs and sense wires of the detector.

3.6. BLAST Monte Carlo

GEANT-based Monte Carlo simulations were used to model the performance of the

detector as well as the physical processes being measured at BLAST. The geometry of the

detector was explicitly coded and input to GEANT to model the acceptance of the detec-

tor. GEANT propagates the particles through the magnetic field, simulates detector perfor-

mance, and simulates important physical properties such as multiple scattering, continuous

energy loss and an array of other less important physical processes that were not necessary

in the BLAST configuration. A C++ event generator library, DGen, was specially written

for the BLAST Monte Carlo to be input into the GEANT simulation. Cross sections and

spin dependent observables are computed within DGen including 2 ~H(~e, ed), 2 ~H(~e, e′p)n,

2 ~H(~e, e′n)p, ~H(~e, ep) and pion production from the nucleons. Radiative Corrections are

carried out by an implementation of a translated version of MASCARAD[119].

Events can be generated in two ways, distributed according to a cross section, or

according to a white generator with a uniform distribution across the phase space, tagging

the cross section as a weight to each event. The generator’s deuteron calculations are based

on structure function calculations by H. Arenhövel[120] for various channels (elastic, elec-

trodisintegration, inclusive etc). In the case of electrodisintegration the structure functions

were computed on a 5-dimensional grid (θe, φe, θcms, φcms, ω)6. In the case of the inclusive

sarily time-interleaved. Event times are written to all three types of event trees to prevent misinterpretation
of the recorded data.

6According to Arenhövel’s convention
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channel a 3-dimensional grid (θe, φe, ω) was used. The vertex position for the event must

be included as another variable but uses a simple triangular distribution, associated with

the density profile of the internal target, and this can be integrated out before calculating

the other probability distributions associated with the actual physics of the reaction. The

calculations used a cubic spline and other interpolations in order to obtain the relevant cross

section at each kinematic point. DGen was initially designed to work with the deuterium

channels but was later modified to incorporate Hydrogen channels and MAID’s calculation

of pion-production from nucleons.



CHAPTER 4: DATA ANALYSIS

4.1. Overview of the BLAST Experiment

The BLAST experiment was compiled over approximately 9 months and consisted

of two independent datasets. The conditions of the experiments are summarized within

Table 4.1. Approximately 450 kC of integrated charge were accumulated with the deuterium

target from August 2004 until November 2004. In this dataset, the deuterium target was

polarized at a polar angle of 32 degrees into the left sector. Two target cells were used

(switched after the first 40 kC), both were kept at ∼90◦ K and the first cell provided an

average vector polarization of 68% and the second cell maintained a vector polarization of

80% over the majority of this time period. The accuracy of these numbers is about half a

percent and are further discussed in Section 4.8. The electron beam’s injected current over

the 2004 deuterium run increased from ∼100 mA to a maximum current of ∼140 mA and

showed ∼65% longitudinal polarization in the electron beam. During the second production

run, ∼490 kC of charge were accumulated with a deuterium target from March 2005 until

May 2005. During this second production run, the polarization of the deuterium target was

directed at a polar angle of 47◦ into the left sector. There were also two target cells used

over the course of this production running period, each showing ∼68% vector polarization.

The cells were meant to be kept at a temperature of 90◦ K though the higher injected

current pushed temperatures upwards of 120◦ K over the run period. The electron beam

TABLE 4.1. Characteristics of the two independent deuterium datasets included in this
work.

Year θpol
∫

i · dt < i > imax < h > < Pz > <cell T>

2004 32◦ 451 kC 100 mA 140 mA 65% 80% 90 K
2005 47◦ 492 kC 180 mA 200 mA 65% 68% 120 K
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FIG. 4.1. The left sector OHIO neutron counters are shifted from the 2004 configuration
for the 2005 run period.

for the 2005 dataset operated on an average injection of > 200 mA. This second running

period also showed ∼65% longitudinal polarization in the electron beam.

Further differences accompany these datasets in the geometry of the neutron de-

tectors. In the 2005 dataset, the OHIO Walls in the left/parallel sector (described in

Section 3.4.4) were shifted forward and rotated slightly clockwise so that the downstream

edge of the detector array was brought medial to the beamline. Figure 4.1 shows this

displacement.

4.2. Reconstructed Kinematic Variables and Corrections Applied

It was noticed that the internal geometry of the wire chambers used in the BLAST

experiment showed deviations from the pre-installed survey. Three superlayers of criss-

crossed wires are used for locating the path of charged particles in 3D space. If the middle

layer was displaced by exactly one millimeter from its assumed location, it was calculated

that it would create a false measure of the curvature of the fit to a particle’s trajectory
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resulting in an offset of > 35 MeV in the reconstruction of the momentum of an electron or

proton.

Monte Carlo simulations were used to test this estimation (see Figure 4.2). A shift

was created in the geometry file used to feed GEANT the positions of the superlayers of

the drift chambers. Elastic collisions of electrons and protons from the target hydrogen

were generated with the proper unshifted geometry, then reconstructed and analyzed with

the shifted geometry. When calculating the electron beam energy (850 MeV) from the

reconstructed outgoing momentum and angle of the electron or the proton, deviations from

the known results were similar to the suspect experimental results.

The internal geometry of the wire chambers was found to be correct in the initial

survey but had been incorrectly implemented. There were still discrepancies (see Figure 4.3)

between the measured angles and momenta of scattered electrons and recoil protons from

the well known benchmark in elastic kinematics. The first order contributions within the

scope of the kinematic constraints are the elastically scattered particles’ momenta (after ac-

counting for proton’s energy loss) and polar angles as defined within the BLAST frame. The

azimuth shows a systematic deviation of < 0.3 degrees from the constraint of coplanarity

and can thus be neglected since this deviation is less than the resolution in φlab and is only a

second order contribution to the elastic constraints on Q2. A χ2 minimization over Q2 was

attempted over all four first order variables, pe, pp, θe, and θp
1. The resolution of the wire

chambers proves much better in θ, e.g. θe − θe(θp) gives a σ of < 0.5◦(though it centered

itself at about 0.3◦), whereas pe − pe(pp) gives a σ of roughly 15% of the value of pe and a

systematic deviation from zero that was > 15% of pe. Thus the χ2 minimization effectively

1In this example of elastic ep-scattering, a relativistic particle striking a particle at rest follows from
relativistic kinematics. The resulting outgoing particles are expected to be coplanar and all four first order
variables describing the scattered electron and proton, pe, pp, θe, and θp are linearly independent. Each of
these four variables are easily derived from any one of their three partners and thus Q2 can be calculated
using any of these four variables. See Appendix B.
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FIG. 4.2. The upper two plots show Monte Carlo simulations showing reconstructed mo-
menta and polar angles of outgoing electrons and protons resulting from elastic collisions
under ideal experimental conditions. The reconstructed variables are used to calculate the
incoming electron beam energy and are quite consistent with the actual beam energy. Su-
perimposed on the top two plots with lighter points is a profile of the same calculations
from experimental elastic ep collisions. The miscalibrated internal geometry was suspected.
The lower two plots show Monte Carlo reconstructed with a rough 1 mm shift of the middle
superlayer in one sector’s drift chambers. Some features of the data are clearly recreated.
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FIG. 4.3. After the internal geometry of the wire chambers was corrected, substantial
deviations were still evident when the reconstructed variables were used to calculate the
well-known 850 MeV beam energy. The separate sets of points are demonstrative of the
necessity for sector dependent corrections.

determines the systematic deviations in θe and θp with very little influence from the values

of pe and pp. Thus, the first step was to use the measured values of θe and θp event by event,

along with the well known beam energy, and determine the first multiplicative corrections

to pe and pp via the relations Cp
e = pe(θe)/pe, and Cp

p = pp(θp)/pp.

These corrections were input and then the χ2 minimization in Q2 was taken over

the new values of p′e = pe ∗ Cp
e , p′p = pp ∗ Cp

p , and the old values of θe and θp in order to

determine the best values of θe and θp from the best value of Q2 as determined from the

measured values of θe and θp and the corrected values of p′e and p′p.

χ2(p′e, p
′
p, θe, θp) = (Q2 − Q2(p′e))

2/dp2
e+

(Q2 − Q2(p′p))
2/dp2

p+

(Q2 − Q2(θe))
2/dθ2

e+

(Q2 − Q2(θp))
2/dθ2

p,

(4.1)
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The values pe and pp were corrected to prevent the large systematic discrepancies

from influencing the χ2 minimization. After the best Q2 was found per event, we can now

use this best value, Q′2, and derive the best values for θe and θp. Additive corrections are

then found for θe and θp, i.e. ∆θe = θe(Q
′2) − θe, etc.

These corrections were found to be less than 0.3◦ nearly everywhere in the BLAST

acceptance and when plotting the corrected distribution of θ′e − θe(θp) and θ′p − θp(θe), the

mean was found to be centered on zero where it was originally off by ∼ 0.3 degrees (see

Figure 4.4).

Since the checks on the constraints from elastic kinematics using corrected values of

θe and θp were found to be well within the resolution, the final multiplicative corrections to

the momentum were determined by using the functional dependence of pe(θ
′
e) and pp(θ

′
p).

A check on the utility of these corrections that is employed is a calculation of the incoming

electron beam energy using a single particle’s p and θ from one sector, i.e. E(pJ
i , θJ

i ) (where

i = e, p and J = L,R) should amount to ∼ 850 MeV. When convoluting these first order

contributions by reconstructing the beam energy from final corrected values, we show a

correlation with the expected beam energy and deviations that are at least a factor of 2 less

than the resolution of the momentum of both the proton and electron (see Figure 4.5).

Corrections for the polar angle and momentum have been applied and proven useful

in deuterium channels. There is a question of the applicability of these corrections for a

different target since the corrections are defined with the well-defined phase space of the

ep-elastic. When shifting to quasielastic kinematics, it can be argued that the outgoing

particles from the reaction may traverse different regions within the Drift Chambers that

give different systematic offsets in the measured momenta. For the proton, this point has

much more force. Since 2 ~H(~e, e′n)p uses only the corrections to the electron, and the
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FIG. 4.4. The top two plots show the distributions resulting from the relation θe − θe(θp).
These are calculated per coincident event tracked by the wire chambers. There are three
sets of data plotted, two software versions of reconstruction that show clear deviations from
0◦ and a final recrunched dataset using corrected polar angles of the outgoing particles. The
two profiles show that both sectors have been independently corrected. The 1D distributions
with fitted Gaussians on bottom are the results of the sector dependent corrections to
θe and θp event by event. The maximum deviation from a mean of zero is shown at 6
thousandths of a degree while the maximum convolution of the resolutions is 0.6◦ which
gives an experimental σθ = 0.43◦.
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FIG. 4.5. The plot on the left features electrons while protons are on the right. The
corrected data from both sectors is lumped together along with the raw data analyzed after
the correction to the internal geometry of the drift chambers. Corrections using the χ2

minimization and elastic kinematics were done in two steps and the final corrections resulted
in a distribution centering itself on 850 MeV for the electrons and approximately 860 MeV
for the protons. It is not clear why the reconstructed energy of the beam is overestimated
from the proton kinematics but the resolution of the momentum as reconstructed in BLAST
is σp = 35 MeV and this result is within the propagated error expected in such a calculation.
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quasielastically scattered electron’s outgoing momentum covers a very similar phase space

to the outgoing electrons from ep-elastic, these systematic corrections to the electron’s

momentum were used in the final analysis of Gn
E . In other channels, such as quasielastic

proton scattering and inelastic channels, other methods of momentum corrections were

pursued and applied. Quasielastic proton scattering has been corrected using comparisons

to Monte Carlo[122] and also using the constraints of quasielastic kinematics by enforcing

the missing mass of the neutron[123]. The inelastic channels are beyond the scope of this

work.

4.3. Identification of 2 ~H(~e, e′n)p Events

The trigger logic of 2 ~H(~e, e′n)p events are set to sequester coincident hits from the

drift chambers and a scintillator of one sector with an opposite sector neutron detector (see

#2 from Table 3.6). On top of the trigger logic is a redundant inclusion of realistic readings

within the actual detectors that initiated the trigger logic, i.e. positive timing values along

with deposited energies corresponding to realistic values from the photomultiplier tubes of

the associated detectors. In the BLAST software, there was also an inclusion of a require-

ment of tracked particles to be of momentum greater than 150 MeV in order to exclude

positrons emitted from the collimator and target holding cell which reduced a great deal of

irrelevant events from the sample passing the trigger logic.

There is a possibility that events categorized within the trigger logic such as coinci-

dent opposite sector scintillators could also contribute to the 2 ~H(~e, e′n)p yield, but there is

only be a few hundred neutrons to gain while there would be considerable difficulty involved

in the extraction and thus we have limited the event sample to those events that fire a neu-

tron detector. It has been postulated that one could extract another 40% of the present
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sample [138] by selecting the inclusive channel with the opposite sector charge veto, though

the difficulties in extracting a clean sample along with the loss of the kinematic information

of the neutron amounts to a substantial increase in the systematic uncertainties of that

anecdotal data sample. It is not included here.

The following is a quick list of the cuts that are described in the succeeding para-

graphs. They are easy to reference by their itemization and are as follows:

(A) Trigger Logic;

(B) Charge Veto;

(C) Vertex = Origin ±20 cm;

(D) Polar angle neutron cut: 33◦ < θn < 76◦;

(E) Azimuthal angle neutron cut: φ⊥
n = 180◦ ± 13◦, φ

‖
n = 0◦ ± 13◦ (see Figure 4.7);

(F) Specific multiplicities of impossible detector combinations;2

(G) Kinematics: 0.02 < βn < 1.0;

(H) Kinematics: |Mm − Mp| < 0.1GeV
c2 ;

(I) Kinematics: |W − Md| < 0.1GeV
c2 ;

(J) Kinematics: |Q.E.| < 0.1GeV
c2 .3

Medium energy electron scattering experiments that employ neutron detection are

typically hindered by low statistics, relatively high systematic errors, and proton contamina-

tion. In the quasielastic neutron channel, a total of +500k neutrons were accumulated. The

systematics are greatly reduced in the BLAST experiment since the data from 2 ~H(~e, e′n)p,

2This cut refers to multiplicities of potential neutron hits that are unrealistic. When taking notice of the
neutron detector geometry in the overloaded perpendicular kinematics sector, the L20’s shadow the Ohio
Walls and the front wall of the L15’s shadow the back wall. Combinations of hits between these sets of
detectors are allowed while combinations of L20’s and L15’s are indicative of noise or false events and are
thus rejected from the data sample.

3This cut is a cut around the quasielastic ridge, Q.E., which is derived from the invariant mass formula
where one would input the mass of the neutron as the mass of the target. It is redundant with respect to
(I).



125

2 ~H(~e, ed), and 2 ~H(~e, e′p)n were all run simultaneously and thus, under equivalent con-

ditions. The measurement of asymmetries in double-polarized exclusive scattering most

significantly reduce the systematic errors of the experiment. Furthermore, the BLAST ex-

periment was blessed with a continuous charged particle detector which acted as an effective

proton veto. The wire chambers cover nearly the entire neutron acceptance4. Each layer of

wires is 98% efficient for detecting charged particles traversing the chambers and thus gives

negligible chance for any charged particle to escape 18 layers of wires undetected. Allow-

ing up to twelve wires to detect voltage fluctuations due to noise still gives a probability

< 0.00001%. Given this “charge veto,” (B), we escape the problem of proton contami-

nation. Also, the minimized material between the target and the veto detector (the wire

chambers) minimize the number of protons from 2 ~H(~e, e′p)n converting into neutrons in

those materials before entering the veto chamber, e.g. the target wall, thin wire chamber

entrance, and the small air volume due to the proximity of the wire chambers to the target

cell.

A few initial cuts were needed due to limitations of the experiment. The holding

field and polarization of the nuclei in the region of the internal gas target were found to be

unreliable at distances greater than 20 cm from the origin in the BLAST coordinate system

(see Figure 3.11). This initial cut, (C), restricts the vertex distribution of the scattered

particles to the origin ±20 cm.

Another cut on the acceptance was taken into account when plotting the effects of

the charge veto on particular detectors, specifically the OHIO and L20 neutron detectors.

The yield over the polar angle acceptance spiked in these neutron detectors at an angle

4In the 2004 configuration of the OHIO Walls, both sectors extend approximately four degrees further
than the coverage of the wire chambers and thus requires a fiducial cut (D) restricting the scattered neutron’s
polar angle below 76◦. The 2005 configuration of the left sector OHIO Walls is completely covered by the
wire chamber acceptance.
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FIG. 4.6. These plots show successive distributions and cuts corresponding to those cuts
listed as A-E as delineated in this section.



127

greater than 76◦ as plotted along with a visualization of the applied cut in Figure 4.6.

Further cuts on the neutron acceptance are motivated by a comparison with edge effects

from the simulated Monte Carlo events of the 2 ~H(~e, e′n)p channel. A comparison is made

between the solid angle acceptance of the neutron detectors from the data sample and

Monte Carlo in order to identify any “edge effects”. The yields are plotted over the solid

angle neutron acceptance and the yields per bin are normalized to the total integral of the

respective plots of data and Monte Carlo. These plots are then divided and any “edge

effects” become obvious in the final plot of this quotient. This final fiducial trimming of

the data is described thoroughly in Figure 4.7.

The BLAST software library enables reconstruction of the events in our sample and

supplies such useful information as the momenta, time of flight, and outgoing angles of the

scattered particles, e.g. pe, θe, φe, pn, θn, φn, and the aforementioned vertex z whose cut

about the origin has already been motivated. These parameters allow us to reconstruct the

kinematics of each event and plot meaningful information relevant to the measurement, e.g.

~q, Q2, ω, W , Mm (missing mass), pm (missing momentum), etc. The binding energy of the

deuteron is extremely small in comparison to the beam energy and kinematic resolution of

the BLAST experiment. It can be neglected when considering the resulting kinematics that

define a quasielastic electron-neutron scattering event.

Despite our ability to reliably make cuts on hardware and the vertex origination,

we need the kinematics to further constrain our data sample by using the aforementioned

quantities. For the special case of 850 MeV electrons colliding with static deuterons of

energy 3
2kT , which is again negligible, the undetected particle of an 2 ~H(~e, e′n)X event is

obviously dominated by events with X = p. The time of flight of the detected neutron of

a quasi-elastic event is measured and should correspond to a value of at least the expected
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FIG. 4.7. These six plots are two dimensional histograms characterizing the BLAST accep-
tance, Ωn. On the top row, in the leftmost plot, the yield is plotted over the solid angle
acceptance and normalized to the total number of neutrons detected. The plot to the right
is the normalized yield plotted from the BLAST Monte Carlo simulations. The rightmost
plot is the quotient of the two previous plots; it should and does hover at about unity since
our Monte Carlo is sufficiently descriptive of our experiment. The three plots on bottom
are analogous to the top three except each bin is also convoluted with the average momen-
tum measured as a function of solid angle. Again, the rightmost plot, the quotient of the
previous plots, should and does hover at about unity showing that Monte Carlo and data
are in good agreement. The acceptance cuts (D and E) introduced at this stage of analysis
are used to decimate the “edge effects” that can be seen in the two rightmost plots. At
low polar angle (θn < 30◦) and at excessive off-axis azimuthal angles (|φn − 180| < 13◦) the
quotient describing the quality of the data deviates considerably from unity.
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time of flight for a photon since the only potential neutral particles that can contaminate

the neutron sample are photons from ancillary scattering processes or the decay of a π0

from the decay of a ∆-excitation where X = pπ0 → pγγ. To prevent any reactions in which

X involves an outgoing photon and misfires our neutron detectors, we include cut G. Using

the time of flight of the neutron, our resulting quasielastic events can be defined using our

kinematic quantities. To reiterate previously defined values such as the Lorentz-invariant

Q2, the missing mass Mm, the invariant mass W , and other important quantities such as

missing energy and missing momentum, Em and pm:

Q2 = q2 − ω2,

Em = md + ω − En,

~pm = ~q − ~pn,

Mm =
√

E2
m − p2

m,

W =
√

m2
d + 2mdω − Q2.

(4.2)

These quantities give further insight into the process we observe. Knowing that we

are investigating the 2 ~H(~e, e′n)p channel, Mm, Em, and pm should reduce to the mass (Cut

H), energy, and momentum of the proton, respectively, while W reduces to the mass of

the deuteron (Cut I). Some of this information along with respective cuts can be seen in

Figure 4.8. The invariant mass peak at md derives its width from the Fermi momentum of

the deuteron’s constituents. Any further smearing of W , along with the other important

quantities here, occurs due to the resolution of the detector in determining the angle and

momenta of the outgoing particles. Cuts are made on the missing mass and invariant

mass to ensure that the mentioned quantities do not venture into values corresponding

to inelastic processes such as ∆ production where other reactions that may accompany a
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detected neutron are X = pπ0 or X = nπ+. The latter are often rejected but still the high

momentum π+ mesons are emitted into a 4π solid angle and can pass outside the acceptance

of the veto detector, forcing us again to require kinematic cuts.

In the plane wave impulse approximation we can use the invariant mass equation,

set the mass of the target equal to the mass of the neutron and solve to find the relation

Q2 = 2mnω. This defines the process where the virtual photon exchange occurs between

the electron and a singly struck neutron, i.e. quasielastic scattering off the neutron. This

provides another cut (J) that can be applied in order to further isolate events that occur

on this quasielastic ridge. The Fermi motion within the deuteron along with any final state

interactions or radiative effects will cause deviations from the elastic kinematic assumptions

that define quasielastic scattering.

Figure 4.8 shows the diminishing features of the photon peak in the neutron time of

flight and the decaying inelastic contamination in the invariant mass as we employ kinematic

cuts such as G-J. We make sure the velocity of the accepted neutrons are not the speed

of light, which practically kills the photon peak. Then we constrain the missing mass and

then, somewhat redundantly, include a cut on the condition of quasielastic scattering and

further, redundantly constrain the invariant mass peak.

4.4. Q2 Bin Selection

Now that I have shown the reduction of our dataset to a clean sample, we can

demonstrate the separation and organization of the data. The Lorentz-invariant Q2 allows

us to bin the data such that we are probing regions deeper within the neutron as we progress

along into higher momentum transfers. In order to satisfy the most general solution of

the QFT vertex where the electron interacts with the neutron via a virtual photon, it



131

FIG. 4.8. The plots above demonstrate the distributions and cuts delineated in this section
as G-J. The bottom two plots show the measured time of Flight of the neutron and the
invariant mass as measured from the surviving events’ electron kinematics.
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TABLE 4.2. The resulting number of neutrons of both datasets within the selected Q2

bins tallied after each cut is applied. The cuts are labeled as listed in the previous section.
The bins are defined as 0.1 ≤ Q2 < 0.17, 0.17 ≤ Q2 < 0.25, 0.25 ≤ Q2 < 0.35, and
0.35 ≤ Q2 ≤ 0.55.

Cuts 〈Q2〉 = 0.14
(

GeV
c

)2 〈Q2〉 = 0.20
(

GeV
c

)2 〈Q2〉 = 0.29
(

GeV
c

)2 〈Q2〉 = 0.42
(

GeV
c

)2

2004

A, B, and C 979814 218263 232121 398806

D, E, and F 398165 87581 93206 160948

G and H 110794 78209 35858 23740

I and J 101759 71948 31881 18463

2005

A, B, and C 684445 149936 155021 240479

D, E, and F 288587 62570 64305 101401

G and H 107328 73758 24856 17123

I and J 97366 67166 21166 12724

must satisfy Lorentz invariance, gauge invariance and the incoming and outgoing particles

must satisfy the free particle Dirac equation[121]. Therefore, the form factors, to lowest

order, must be functions of Q2. The experiment was designed to probe the region that has

historically shown to give the maximum value of Gn
E . The Q2 binning chosen is defined in

Table 4.2. The table also includes the yield in each bin after specific combinations of cuts

are applied. The BLAST experiment uses six combinations of target and beam polarization

states yet only four contribute to the beam-vector asymmetry. Therefore, only about two-

thirds of the final yield in this table contribute to the statistical errors of our measurement.

The sophistication of the reaction requires comparison with the BLAST Monte Carlo

and must also correspond to the kinematics inherent in the Monte Carlo event set. Within

the four Q2 bins, the relevant distributions characteristic of 2 ~H(~e, e′n)p events and quantities

descriptive of the phase space being probed can be plotted along with the distributions of

the Monte Carlo simulations used to analyze the data. This data is shown in Figures 4.9-

4.12. The asymmetries show the highest sensitivity to Gn
E when measured as a function of
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pm, θnp
cms, and θ∗ and these three distributions are shown with the missing mass Mm, the

energy transfer ω, and the coplanarity φn − φe.

4.5. Raw Experimental Asymmetries

The BLAST experiment used six combinations of polarization states of the beam

and target. The beam helicity was flipped at each fill of the Storage Ring. The target

polarization was randomly flipped between the polarized vector-plus, vector-minus, and

tensor-minus polarized states. Over the course of the experiment, it cannot be guaranteed

that an equal amount of time was spent in each configuration, or that an equal amount of

charge passed through the target in each combination of states. Therefore, the yield of each

state is normalized by the respective accumulated charge in each state and will be referred

to as the column vector, n(h, Pz , P zz). The associated components are,

n(h, Pz , P zz) =




















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
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













. (4.3)

As stated in Chapter 2, h, Pz, and Pzz are the beam’s longitudinal polarization,

the target’s vector polarization and tensor polarization, respectively. The five asymmetries

that are characteristic of deuteron electrodisintegration are Ae, AV
d , AV

ed, AT
d , and AT

ed are

defined in eqns. 2.46-2.50. They can be rewritten as linearly independent combinations

of six normalized yields constituting the six components of our column vector. We can

represent this in matrix form,
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FIG. 4.9. A comparison of key Monte Carlo and Data Distributions pertinent to accurately
measuring Gn

E . This is the first Q2 bin and the Monte Carlo is represented by the dark
points.
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FIG. 4.10. A comparison of key Monte Carlo and Data Distributions pertinent to accurately
measuring Gn

E . This is the second Q2 bin and the Monte Carlo is represented by the dark
points.
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FIG. 4.11. A comparison of key Monte Carlo and Data Distributions pertinent to accurately
measuring Gn

E . This is the third Q2 bin and the Monte Carlo is represented by the dark
points.
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FIG. 4.12. A comparison of key Monte Carlo and Data Distributions pertinent to accurately
measuring Gn

E . This is the fourth Q2 bin and the Monte Carlo is represented by the dark
points.
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(4.4)

where n̄ is the average of the rates of the six polarization states. The coefficients are indica-

tive of the tallied yields in the numerator with respect to the total yield in the denominator

and H. Arenhövel’s definition of the asymmetries. When expressing experimental results

in terms of the asymmetries, the luminosity and the detection efficiency are explicitly can-

celled in this formulation. Figures 4.13 and 4.14 show the raw asymmetries as a function

of pm and θcms
np from the 2004 and 2005 configurations, respectively. Arenhövel [35] and

Donnelly and Raskin [33, 34] show, using the coordinate system and variables defined in

Section 2.3, that the electric form factor Gn
E is most sensitive to the vector asymmetry AV

ed

as a function of one of three variables, pm, θcms
np , or θ∗. Each of these measurements are

statistical convolutions of each other and can only be used to verify one another in final

calculations of Gn
E .

4.6. Background Corrected Asymmetries

4.6.1. Unpolarized Background Correction. The BLAST data, even after

cuts, is still subject to corrections due to background. During production running, data

had been collected with an empty target cell for exactly this purpose. It is known that the
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FIG. 4.13. These plots comprise the raw asymmetries, AV
ed(pm) and AV

ed(θ
np
cms) from the

data taken during the 2004 Configuration.
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FIG. 4.14. These plots comprise the raw asymmetries, AV
ed(pm) and AV

ed(θ
np
cms) from the

data taken during the 2005 Configuration.
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Aluminum cell can contribute electroscattered neutrons to the BLAST quasielastic elec-

troscattered neutron sample. The background reaction, Al(e, e′n)X, would arise from the

same region as the real data sample and can pass all cuts applied to the 2 ~H(~e, e′n)p reaction.

The math used to correct the data is fairly simple. If we consider that we want the real

asymmetry,

AReal =

∑

i gin
Real
i

∑

i n
Real

, (4.5)

where gi corresponds to the six scalar coefficients specific to the asymmetry AV
ed and nReal

i

refers to the column vector in eq. 4.3, then we must account for the fact that we are not

measuring a pure sample but rather one contaminated with background events such as

unpolarized quasielastic e-n events arising from electron scattering off of the cell wall. This

means that we are not actually measuring AReal but rather ATotal which is not made of a

linear combination of nReal
i but rather with

∑

i(n
Real
i + nB) where nB is the background

rate of Al(e, e′n)X which is tallied with the real rate. The necessary correction is then

AReal = ATotal × (1 − fcell), (4.6)

where fcell = 6nB
∑

i
(nReal

i +nB)
. The actual measurement of fcell can be seen in Figure 4.15 and

has a maximum value of about 3.8% in the region of interest specific to this measurement

of Gn
E . This number comes from the background rate with Hydrogen gas in the target

since such a situation is obviously more related to the conditions of the experiment since

we have a Deuterium gas target.5 When factoring in the background correction, the ex-

act correction is parameterized as a function of missing momentum since the background

correction increases monotonically in missing momentum. The same parameterization is

also done over θcms which is the other variable with which we will confirm the value of Gn
E .

5The yields from hydrogen were treated as suspect neutrons and beam-vector asymmetries were formed
producing results that were consistent with zero. This also reaffirms there is negligible proton contamination.
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FIG. 4.15. The fraction of events arising from neutrons scattered from the cell wall are here
depicted. Events were extracted from empty target runs and polarized hydrogen target runs
where investigations are processed in order to determine the potential of contaminating
Al(e, e′n)X events in the data sample. AV

ed(pm) is measured over a range, 0.0 < pm ≤
0.2GeV

c and the maximum value of fcell (which is normalized to the integrated charge, i.e.
events/Coulomb) in the region of interest has a maximum of ∼3% for empty target runs,
and a maximum of ∼4% for hydrogen runs. This is an example of how the gas inside the
target affects the optical characteristics of the cell. The beam blows up slightly and more
cell wall scattering is expected. The beam blowup factor comes from a fit on fH

cell/f
Empty
cell

across the region from 0 < pm < 0.3 and gives a value of 1.38 ± 0.08. The exact same
process is done for the background over θcms. The beam blowup is also fitted and confirms
the fit from pm at a ratio of 1.38 ± 0.09.
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Since ideal quasielastic scattering occurs at θcms = 180◦, the background rate is decreasing

from the region of 130 < θcms < 180. A fit was also done to determine the increase in

the background rate with Hydrogen in the target and was found to agree with the fit from

missing momentum, i.e. fH
cell/f

Empty
cell = 1.38 ± 0.09.

4.6.2. Polarized Background Correction. There is question of potential po-

larized background that needs to be verified. In order to carefully quantify the potential

contamination of polarized electroscattered protons, we can analyze the Hydrogen data

taken at BLAST as if it were our neutron data sample. Any contribution from this dataset

would substantiate another correction to the measured asymmetry. Proton contamination

constitutes a serious problem for the fact that the electron-proton coincidence rate is an

order of magnitude larger than the electron-neutron rate, and further, the asymmetry spe-

cific to the polarized electron-proton coincidence events is more than three times as large

and with an opposite sign.

The contribution from protons is assumed to be negligible since we have a continuous

charge veto consisting of 18 layers of wires determined to have 98% efficiency per layer in

detecting relativistic charged particles. This efficiency suggests that 6 layers of wires failing

to detect a passing proton has a probability of less than a ten-thousandth of a percent. This

makes our proton contamination negligible.

The actual background coming from polarized hydrogen runs is still from the cell

wall, only there are slightly more scattered neutrons. The target’s optical properties change

when a gas is injected. The beam is expected to refract and blow up slightly, creating the

possibility for more wall collisions. This is shown in Figure 4.15 along with the empty cell

background. The value fcell from the hydrogen target averages 1.38 times the value of the
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empty target background rate. This is the beam blowup factor and is more valid for the

raw asymmetry correction. The appropriate correction that will be used in eq. 4.6 is the

value of fcell from the hydrogen target.

4.7. Extraction of Gn
E from Corrected Asymmetries

The perpendicular asymmetry AV
ed, in PWIA, is proportional to the ratio of the

neutron’s electric and magnetic form factors as shown in eqn. 2.52. The accepted realistic

model of the deuteron is not as simple as PWIA and must account for the dynamic properties

associated with final state interactions, meson exchange currents, and ∆-isobar excitation

corrections as described in section 2.4.1. The validity of these modifications to the nuclear

models of the deuteron are still controversial in some circles and some may propose that such

changes must also be proven valid in order for results predicated on such modified models

to be equally tenable. Such topics are beyond the scope of this paper but can be tersely

addressed by noting the expectations of specific models and whether other measurements

extracted from this experiment can verify the utility of the modifications to the model of

the deuteron.

One measurement that lends credence to the Final State Interactions model, is the

measurement of the tensor asymmetry from quasielastically scattered neutrons. In PWIA

and PWBA pictures, the tensor asymmetry at conditions of perfect quasielastic scattering

(pm = 0 and θnp
cms = 180) are expected to be zero. This can be visualized as if we are striking

a quasi-free neutron in a very loosely bound state with a proton. The final state interactions

are calculated to be very small if the proton were struck and the tensor asymmetry goes to

zero for ideal quasielastic protons[122], but the neutron has a finite asymmetry in the FSI

model. In Figure 4.16 the data clearly shows consistency with the FSI models. The lowest
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FIG. 4.16. This figure demonstrates the predictions of the simplistic Plane Wave Born
Approximation as compared with modifications to the deuteron model, specifically Final
State Interactions (FSI). In PWIA and PWBA, the asymmetry is expected to fall to zero at
perfect quasielastic scattering, i.e. a missing momentum of zero. As soon as we inject the
predictions of FSI into the model, the asymmetry becomes negative and reflects the actual
data. These two plots show AT

d (pm) as measured over a range, 0.0 < pm ≤ 0.2GeV
c within

the the two lowest Q2 bins chosen for the analysis of Gn
E . It is obvious from these plots that

the FSI modification to the deuteron’s model is a necessity in understanding the double
polarized scattering cross-section as measured and analyzed from the data at BLAST.

two Q2 bins are shown. As the momentum transfer increases, the difference between the

PWBA and FSI models decreases and the statistics of the measurement also decrease. The

points shown are obviously enough to demonstrate the value of the Final State Interactions

when included into the nuclear model of the deuteron.

The vector asymmetries are measured over the kinematic variables missing momen-

tum, pm, and the opening angle between the proton and the momentum transfer in the

center of momentum frame, θnp
cms. Simulations within the Monte Carlo demonstrate that

AV
ed measured as a function of these variables gives the best sensitivity to the measurement

of Gn
E . The final asymmetries, corrected for background and divided by the measured val-

ues for the product of the target and beam polarization (see Section 4.8.2), are displayed

in Figures 4.17 and 4.18 along with the expected curves from Monte Carlo simulations for

values of Gn
E that are parameterized as ratios of the well-known Galster parameterization

[53] with a = −µn and b = 5.6. H. Arenhövel provided the deuteron model that was used
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for the simulations (see Section 3.6).

Using the corrected values and the expectations of the vector asymmetries respective

of the value of Gn
E used in the simulations of the BLAST experiment, a χ2 minimization

scheme is used to extract the value of Gn
E/Gn

M .

The Monte Carlo simulations provide five sets of expected results, each associated

with a scale factor, ak on the Galster Parameterization for Gn
E (see eq. 2.55). From each

set, k, we can calculate a χ2
j(ak) for each Q2 bin (indexed as j) where

χ2
j (ak) =

∑

i

(Ai
exp − Ai

theory)
2

(σi
exp)

2
. (4.7)

Again, j is the Q2 bin, k is the index of the scale factor for the referenced Monte Carlo

simulation, and now i corresponds to the five bins within the domain of Aexp whether we are

plotting Aexp as a function of pm or θnp
cms. Ai

theory is the expected asymmetry from Monte

Carlo and σi
exp is the associated experimental uncertainty of each bin.

The function χ2
j(ak) is expected to be parabolic about the minimum[125] and is

parameterized over the five points for each Q2 bin assuming ak to be continuous, i.e.

χ2
j(ak) = τmin +

(ak − τ1)
2

(τ2 + akτ3)2
. (4.8)

There are four parameters to this fit represented by τmin,1,2,3. At the minimum,

amin
k , of the parameterized fit to the five values of χ2

j(ak) we can conclude that the value

amin
k best describes the actual value of Gn

E in reference to the model used in the BLAST

Monte Carlo. The fit also delineates the statistical uncertainty in Gn
E as described by the

relation

χ2
j(a

min
k + δamin

k ) = χ2
j(a

min
k ) + 1. (4.9)

where δamin
k is the associated uncertainty in amin

k . The fit to the five points in each Q2 bin of

the 2004 and 2005 data on Aexp as a function of both pm and θnp
cms are shown in Figures 4.19
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FIG. 4.17. These eight plots show AV
ed, both as a function of missing momentum, pm, and

the center of momentum opening angle between the proton and the momentum transfer,
θnp
cms, within the four Q2 bins chosen for the analysis of Gn

E . The product of the beam
and target polarization has been divided out and all background corrections are included.
The predictions from Monte Carlo using incremented ratios of the Galster parameterization
for the value of Gn

E are also shown from 0%-200% with the highest expected value for
Gn

E demonstrating the most positive asymmetry. Error bars in the plots are statistical only.
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FIG. 4.18. These eight plots show AV
ed, both as a function of missing momentum, pm, and

the center of momentum opening angle between the proton and the momentum transfer,
θnp
cms, within the four Q2 bins chosen for the analysis of Gn

E . The product of the beam
and target polarization has been divided out and all background corrections are included.
The predictions from Monte Carlo using incremented ratios of the Galster parameterization
for the value of Gn

E are also shown from 0%-200% with the highest expected value for
Gn

E demonstrating the most positive asymmetry. Error bars in the plots are statistical only.
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TABLE 4.3. The measured values of AV
ed as a function of missing momentum and θnp

cms. The systematic error is approximately
3% and is a convolution of the uncertainty of hPz and the binning as defined by Q2, pm, and θnp

cms (see Section 4.8).

2004

〈Q2〉 〈pm〉 AV
ed δAV

ed ∆AV
ed 〈θnp

cms〉 AV
ed δAV

ed ∆AV
ed

(GeV/c)2 (GeV/c) Corrected Statistical Systematic (degrees) Corrected Statistical Systematic

0.029 0.0515 0.0184 0.0019 144 -0.0846 0.0238 0.0031
0.061 0.0306 0.0110 0.0011 152 -0.0214 0.0171 0.0007

0.141 0.099 -0.0176 0.0119 0.0007 160 0.0194 0.0130 0.0007
0.138 -0.0413 0.0153 0.0015 168 0.0230 0.0115 0.0009
0.177 -0.0020 0.0218 0.0001 174 0.0308 0.0156 0.0011

0.029 0.0384 0.0274 0.0014 144 -0.0551 0.0295 0.0020
0.062 0.0279 0.0143 0.0010 152 -0.0207 0.0215 0.0008

0.203 0.099 0.0136 0.0139 0.0005 160 -0.0009 0.0159 0.00003
0.138 -0.0071 0.0166 0.0003 168 0.0292 0.0132 0.0011
0.178 -0.1034 0.0228 0.0038 174 0.0284 0.0168 0.0011

0.029 0.1236 0.0452 0.0046 144 0.0926 0.0548 0.0034
0.062 0.0382 0.0230 0.0014 152 -0.0570 0.0401 0.0021

0.293 0.100 -0.0050 0.0215 0.0002 160 -0.0252 0.0268 0.0009
0.139 0.0084 0.0249 0.0003 168 0.0264 0.0190 0.0010
0.178 -0.0606 0.0317 0.0022 174 0.0173 0.0212 0.0006

0.029 -0.1015 0.0643 0.0038 144 0.0283 0.0899 0.0010
0.062 -0.0229 0.0329 0.0008 152 -0.1160 0.0633 0.0043

0.410 0.099 -0.0711 0.0303 0.0026 160 -0.1119 0.0419 0.0041
0.138 -0.0824 0.0352 0.0030 168 -0.0508 0.0267 0.0019
0.177 -0.0020 0.0458 0.0001 175 -0.0281 0.0272 0.0010
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TABLE 4.4. The measured values of AV
ed as a function of missing momentum and θnp

cms. The systematic error is approximately
3% and is a convolution of the uncertainty of hPz and the binning as defined by Q2, pm, and θnp

cms (see Section 4.8).

2005

〈Q2〉 〈pm〉 AV
ed δAV

ed ∆AV
ed 〈θnp

cms〉 AV
ed δAV

ed ∆AV
ed

(GeV/c)2 (GeV/c) Corrected Statistical Systematic (degrees) Corrected Statistical Systematic

0.029 0.1598 0.0210 0.0068 144 0.0821 0.0282 0.0035
0.060 0.1258 0.0130 0.0054 152 0.0214 0.0206 0.0009

0.141 0.099 0.0758 0.0142 0.0032 160 0.0983 0.0153 0.0042
0.138 0.0558 0.0175 0.0024 168 0.1232 0.0132 0.0052
0.177 0.0859 0.0251 0.0037 174 0.1358 0.0176 0.0057

0.029 0.2509 0.0328 0.0011 144 0.0327 0.0363 0.0014
0.062 0.1466 0.0172 0.0062 152 0.0976 0.0254 0.0042

0.203 0.099 0.1516 0.0162 0.0065 160 0.1374 0.0186 0.0058
0.138 0.0956 0.0195 0.0041 168 0.1583 0.0156 0.0067
0.178 0.0955 0.0275 0.0041 174 0.1970 0.0199 0.0084

0.030 0.2141 0.0730 0.0091 144 0.1171 0.0722 0.0050
0.062 0.1514 0.0339 0.0064 152 0.0551 0.0529 0.0023

0.286 0.100 0.1361 0.0286 0.0058 160 0.0640 0.0369 0.0027
0.138 0.0860 0.0343 0.0037 168 0.1740 0.0269 0.0074
0.178 0.1610 0.0455 0.0069 174 0.1589 0.0309 0.0068

0.030 0.1180 0.0969 0.0050 144 0.1147 0.1440 0.0049
0.062 0.0833 0.0480 0.0035 152 0.0209 0.0973 0.0009

0.410 0.100 0.1460 0.0432 0.0062 160 -0.0095 0.0627 0.0004
0.138 0.0732 0.0508 0.0031 168 0.1201 0.0393 0.0051
0.178 0.0488 0.0718 0.0021 175 0.1417 0.0385 0.0060
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and 4.20. The results of the data are listed in the table 4.5. The final column within the

table comes from the minimum of the parabolic fit and has a value that demonstrates the

ability of the data to fit the model from which we generate the Monte Carlo that forms a

basis for our extraction of the neutron’s electric form factor. This is divided by the number

of degrees of freedom, ndf , and shows that there is not a demonstrably significant deviation

from the theoretical model. The points that stray from the model and significantly skew the

values of χ2/ndf have the lowest statistical weight within each Q2 bin and lie the furthest

from ideal quasielastic neutrons. They are not excluded in order to preserve consistency

and scientific integrity. The Gn
E points are plotted in figure 4.21.

4.8. Systematic Uncertainties

The beauty of the BLAST experiment is the simultaneous measurement and analysis

of several reaction channels that, together, minimize the systematic uncertainties of each

other. Of the two largest systematic uncertainties (hPz , θ
∗), the coefficient of the multiple

of beam and target polarization, hPz, is best identified using the quasielastic 2 ~H(~e, e′p)n

channel. The target polarization angle, θ∗, is best derived from the elastic 2 ~H(~e, ed) channel.

All other systematics are intrinsic to the detectors, statistics, and internal processes such as

radiative corrections that cannot be eschewed from the data. For clarity, statistical errors

or intrinsic resolutions will be prefixed by δ, whereas systematic errors will be referred to

with a ∆ prefix, e.g. δpe would refer to the resolution of the reconstructed momentum

of the electron, while ∆φe would refer to a systematic shift in the measurement of the

reconstruction of the electron’s azimuthal angle.
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FIG. 4.19. These eight plots show the χ2 Minimization for the asymmetries measured,
both as a function of missing momentum, pm, and the center of momentum opening angle
between the proton and the momentum transfer, θnp

cms, within the four Q2 bins chosen for
the analysis of Gn

E . The predictions from Monte Carlo using incremented ratios of the
Galster parameterization for the value of Gn

E are used to determine the χ2 at the five scaled
points in Gn

E . These are then fit to the parameterization in eq. 4.8 to determine the best
fit for the value of Gn

E .



153

FIG. 4.20. These eight plots show the χ2 Minimization for the asymmetries measured,
both as a function of missing momentum, pm, and the center of momentum opening angle
between the proton and the momentum transfer, θnp

cms, within the four Q2 bins chosen for
the analysis of Gn

E . The predictions from Monte Carlo using incremented ratios of the
Galster parameterization for the value of Gn

E are used to determine the χ2 at the five scaled
points in Gn

E . These are then fit to the parameterization in eq. 4.8 to determine the best
fit for the value of Gn

E .
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TABLE 4.5. Results of the BLAST experiment. Gn
E is listed as measured from asymmetries

as a function of pm and θnp
cms from 2004 and 2005 data as well as the combined data from

both years.

〈Q2〉
(

GeV
c

)2
Gn

E δGn
E (stat) ∆Gn

E (sys) χ2/(ndf = 4)

2004 pm

0.14 0.0387 0.0069 0.0022 1.09
0.20 0.0406 0.0068 0.0024 1.73
0.29 0.0608 0.0084 0.0035 1.58
0.41 0.0518 0.0095 0.0030 1.05

2004 θnp
cms

0.14 0.0424 0.0068 0.0025 1.25
0.20 0.0415 0.0066 0.0024 0.17
0.29 0.0565 0.0081 0.0033 2.12
0.41 0.0524 0.0093 0.0030 1.00

2005 pm

0.14 0.0441 0.0092 0.0026 2.30
0.20 0.0616 0.0097 0.0036 2.24
0.29 0.0443 0.0127 0.0026 1.02
0.41 0.0382 0.0143 0.0022 0.46

2005 θnp
cms

0.14 0.0411 0.0086 0.0024 1.92
0.20 0.0622 0.0092 0.0036 0.40
0.29 0.0441 0.0123 0.0026 1.33
0.41 0.0416 0.0141 0.0024 1.05

2004 & 2005 Combined, pm

0.14 0.0406 0.0055 0.0024 na
0.20 0.0476 0.0056 0.0028 na
0.29 0.0558 0.0070 0.0032 na
0.41 0.0477 0.0079 0.0028 na

2004 & 2005 Combined, θnp
cms

0.14 0.0419 0.0053 0.0024 na
0.20 0.0486 0.0054 0.0028 na
0.29 0.0528 0.0068 0.0031 na
0.41 0.0492 0.0078 0.0029 na
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FIG. 4.21. The points listed in Table 4.5 are plotted here. The statistical errors are shown in
the plots showing 2004 and 2005 data superimposed. The statistical and systematic errors
are displayed in the combined plots. Systematic errors are described fully in the following
section 4.8. Results from the analysis in missing momentum and the opening angle in the
center of momentum frame between the proton and momentum transfer are shown.

TABLE 4.6. A tabulation of the systematic errors in the BLAST Experiment and the
resultant measurement of Gn

E .

Source of Systematic Error Contribution

Target Polarization Angle, θS 5%
Product of Beam and Target Polarization, hPz 1.2%
Reconstruction, (Q2, pm, θnp

cms) 1%
Cut Dependence, |Mm − Mp| ≤ nσ 1.5%
Uncertainty of Gn

M 1.5%
Radiative Corrections 0.7%
False Asymmetries 1%

Total 5.8%
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4.8.1. Target Polarization Angle. As mentioned earlier, the precise analysis

that gives us a best fit for the polarization angle of the target comes from the elastic 2 ~H(~e, ed)

channel. The two lowest Q2 points in the asymmetries AT
d as measured simultaneously in

both, the parallel and perpendicular kinematics sector, were used to simultaneously fit for

the tensor polarization Pzz and for the spin angle θS. This determination of θS may be the

most important determination as the sensitivity of Gn
E is estimated at 12%/degree.

Two asymmetries, A
‖
raw and A⊥

raw were measured and compared with Monte Carlo

to determine the tensor polarization Pzz coefficient. Mathematically,

P ‖
zz(θ

S) =
A

‖
raw

A
‖
MC

and P⊥
zz(θ

S) =
A⊥

raw

A⊥
MC

, (4.10)

and finding the average value θ̄S where P
‖
zz(θ̄S) = P⊥

zz(θ̄
S) would give us the spin angle of

the deuterium target. The error in the determination is estimated by the confidence interval

where the end points are,

χ =
P

‖
zz(θS) − P⊥

zz(θ
S)

√

[δP
‖
zz(θS)]2 + [δP⊥

zz(θ
S)]2

= ±1. (4.11)

The procedure is noted in Figure 4.22. The values determined from the fit are Pzz =

0.683 ± 0.015 ± 0.02, θ̄S = 31.72 ± 0.35 ± 0.2 in 2004 and Pzz = 0.563 ± 0.013 ± 0.02,

θ̄S = 47.74 ± 0.42 ± 0.2 in 2005 [83]. The errors here are statistical and systematic,

respectively. Systematic errors in the determination of Pzz and θS follow from the resolution

in reconstruction that went into the calculation of Q2 since the asymmetries used were

measured as a function of Q2. The sensitivity of Gn
E to the polarization angle describes the

largest contribution to the systematic error and is estimated at 5%.

4.8.2. Product of Beam and Target Polarization. The cross-section and the

respective normalized yields that contribute to the measurement of the asymmetries in
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FIG. 4.22. The Monte Carlo was generated at spin angles of 1◦ increments in order to find
the Asymmetry used to calculate the tensor polarization Pzz as a function of the spin angle
for both datasets, 2004 (left) and 2005 (right). Where both, the parallel and perpendicular
kinematics sectors cross is the best fit for the spin angle θS.

this experiment are directly proportional to the product of the beam polarization and the

vector polarization of the target. Again, the simultaneity of the use of the double-polarized

cross section of quasielastic protons and elastically scattered deuterons provides us with

a unique ability to better measure values that exclusive detection of the neutron channel

could severely limit our ability to estimate.

The estimate of this product, hPz as referenced in eq. 2.52 (equations 2.46-2.50

are also each proportional to hPz), is extracted from the well-known asymmetry of the

quasielastically scattered protons. The procedure is quite simple. Monte Carlo is generated

and expected asymmetries for the BLAST acceptance are calculated as a function of missing

momentum. AV
ed is then measured. Since the calculation and measurement are expected to

be directly proportional to one another, the two highest statistics points lowest in missing

momentum and the least affected by modifications to the deuteron model are scaled to match

the Monte Carlo to the data. This exact ratio is our value of hPz within the accuracy of
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FIG. 4.23. A highly accurate fit is obtained from the vector asymmetry where the well-
known form factors are used to calculate the cross-section for electroscattered quasielastic
protons. In order to restrict the contributions from lesser known inelastic modifications to
the proton’s scattering matrix, the fit is restricted to the points below 0.15 GeV/c. The
results for the 2004, 32 degree vector polarized target configuration gives a value, hPz =
0.541 ± 0.0035(stat .) ± 0.02(sys.). The results for the fits to 2005, 47 degree configuration
gives a value of hPz = 0.468 ± 0.0046(stat .) ± 0.02(sys.).

the fit. The fit is performed over the first few points in missing momentum (< 0.15GeV/c)

in order to minimize the contributions from inelastic effects. The values for the 2004 and

2005 configurations are done separately and give values:

hP 2004
z = 0.541 ± 0.0035(stat .) ± 0.02(sys.),

hP 2005
z = 0.468 ± 0.0046(stat .) ± 0.02(sys.).

The demonstration of this measurement and fit are shown in Figure 4.23. A similar

fit can also be performed as a function of the parallel kinematics asymmetries in the

2 ~H(~e, e′n)p channel. The systematic error is a result of the use of the measured spin angle

and the resolution of the reconstructed variables.

The vector asymmetry of the 2 ~H(~e, e′n)p channel, AV
ed, is completely dominated

by the magnetic form factor of the neutron in the parallel kinematics sector where the
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FIG. 4.24. An analogous but less accurate fit is obtained from the asymmetries in the
parallel kinematics sector where the contribution from the neutron’s magnetic form factor
dominates. The fit gives a value, hPz = 0.547 ± 0.012, confirming the fit from quasielastic
proton asymmetries.

momentum-transfer is nearly parallel with the angle of polarization. This quantity Gn
M is

very well-known compared to Gn
E . An analogous procedure is followed where Monte Carlo

simulations are used to calculate the asymmetry and then scaled to match the measurement

in the data sample (see Figure 4.24. The fit from quasielastic neutrons in the parallel sector

are consistent with the fit from quasielastic protons (see Figure 4.23). The systematic error

associated with hPz , before rounding is slightly less than 4% and translates linearly into

the systematic error of the measured asymmetries. This value is revisited at the end of the

following section in order to be more complete in the estimation of the systematic error of

the vector asymmetry, ∆AV
ed.

4.8.3. Reconstruction. The errors in pe and θe are best estimated using the out-

going particles from the H(e, ep) reaction channel. Using coplanar coincident electrons and

protons, energy and momentum constraints allow for Gaussian fits of the distributions of

θe(θ
exp
p )− θexp

e and pe(p
exp
p )−pexp

e . The relationship can also be done in reverse, i.e. finding
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the distributions for the proton kinematics that are reconstructed. The resultant resolutions

give δθe = 0.43◦ and δpe = 0.037GeV/c.

Estimating the systematic errors (∆θe and ∆pe), we must assume that the proton

channel is perfect and then estimate the error in the electron’s kinematics. For ∆θe, the

quantity we use is the difference of Q2(θe) and Q2(θp) which, again, are calculable from the

outgoing polar angle. For the BLAST ep-elastic data |Q2(θe)−Q2(θp)| = 0.0015, which gives

an underlying systematic error of ∆θe ≈ 0.1◦. Since θp and θe are the most well determined

variables in the BLAST experiment, it only makes sense to use them for determination of

the systematic error in pe as well, using the same difference in Q2. |Q2(pe) − Q2(θp)| =

0.0028. This difference corresponds to an estimated systematic error ∆pe ≈ 0.004 GeV/c.

The azimuthal errors can be found using very similar means, and δφe ≈ 0.3◦ comes

from a Gaussian fit to the coplanarity, i.e. the |φe − φp| distribution. The difference of the

mean from 180◦ allows description of the systematic error, ∆φe ≈ 0.2◦.

To characterize the uncertainty in the neutron’s kinematics, namely the momentum,

the timing resolution, δtn, of the neutron detectors is the descriptive quantity. It has been

measured at ∼4 nanoseconds. The kinematics of a quasielastic collision are used along

with energy and momentum constraints to calculate the time of flight of the neutron, tcalc
n

and compare it to the measured time of flight, tn. The beam energy and acceptance at

BLAST provides the capability of detecting neutrons up to a momentum of 900 MeV/c.

The resolution of the neutron timing, δtn = 4 ns, corresponds to almost 23% of a neutron’s

momentum at 750 MeV/c and only 8% at a momentum of 300 MeV/c. Since the measured

momentum of the neutron is actually a calculation derived from the measured time of flight,

the equation governing the uncertainty arises from the uncertainty in tn, the neutron’s time
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of flight,

δpn

pn
=
(

1 + β2γ2
) δtn

tn
. (4.12)

This uncertainty is by far the largest loss of resolution in the reconstruction of the kinematics

of the neutron channel when at high momentum. The relatively high uncertainty in the

time of flight also receives a contribution from the thickness of the neutron detectors. There

is no method by which we can determine where, along 20 cm thickness of scintillating

material, the nuclear reaction that renders the neutron detectable is actually observed.

This discrete space (the scintillating bar) also creates the lack of resolution, relative to

the electron, in the polar and azimuthal angles. At low momentum, the uncertainty of

the neutron’s momentum more than doubles the resolution of the electron’s momentum

(δpe ≈ 3%). The systematic error involved with the neutron’s momentum is a convolution

of the systematic error of the remaining five kinematic variables used to determine the

systematic corrections to the neutron’s time of flight as described in section 3.4.4 since

systematic deviations from expected results were corrected through a detailed process. The

timing of the neutron detectors were calibrated using the exact same process utilizing cosmic

rays as is described in Figure 3.29. From these timing offsets, the calculated time of flight,

tcalc
n , derived from the kinematics of quasielastic scattering was compared to the actual

measured time of flight, tn, and any remaining deviations were removed. The corrections to

tn were determined from the expected momentum of the neutron calculated from all other

kinematic variables along with constraint of the missing mass being the mass of the proton,

i.e. tn = f(pe, θe, φe, θn, φn,Mm = Mp). The systematic error is obviously a convolution of

all of these individual errors, e.g.

∆tn =
δf

δpe
∆pe +

δf

δθe
∆θe + . . . (4.13)



162

The convolution of all systematic errors, ∆tn(∆pe,∆θe,∆φe,∆θn,∆φn)/tn ≈ 2-5%. This

percentage is actually maximized at low momentum and contributes to a systematic error

of ∆pn ≈ 0.030 GeV/c in our first Q2 bin, but drops to ∆pn ≈ 0.014 GeV/c at the highest

values of Q2 allowable within the BLAST acceptance. As ω, βn, and γn increase, the effective

contribution of the electron’s systematic errors decreases.

The neutron’s uncertainty in the polar angle comes directly from the discrete assign-

ment of polar angle as a function of the bar that detected the neutron and the origin along

the target where the trace of the path of the neutron’s flight begins. The only potential

systematic in the neutron’s polar angle is the trigonometric convolution of any systematic

error in the reconstruction of the electron’s vertex or origin along the target’s axis, ∆ze.

Using the ep-elastic dataset again, we notice that the mean of the distribution, ze − zp is

approximately 0.5 cm. Being conservative and attributing this entirely to the electron, the

systematic error ∆θn(∆ze) ≈ 0.1◦.

The neutron’s systematic error in φn can also be analyzed in reference to the elec-

tron’s known deviations. Though we are analyzing quasielastic events, the coplanarity or

difference of the azimuthal angles of the coincident electrons and neutrons should still center

itself on 180◦. Plotting |φe − φn|, our mean is centered at 180.3◦. This gives an estimate of

∆φn(∆φe) ≈ 0.2◦.

Table 4.7 gives the uncertainties of the reconstructed variables used in the analysis

of 2 ~H(~e, e′n)p in the BLAST experiment. The asymmetries are sequestered into four bins

in Q2 where the convoluted uncertainty is δQ2/Q2 ≈ 1%. These vector asymmetries are

then plotted over five bins in missing momentum and the center of momentum opening

6Percentage comes from δpn/pn, and the resolution of the decreases as the momentum of the neutron
increases. The resolution of the time of flight of the neutron does not change yet its contribution to the
uncertainty of the momentum of the neutron increases as βn increases.

7Percentage comes from ∆pn/pn, but the systematic error decreases monotonically as the momentum of
the scattered neutron increases.
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TABLE 4.7. The resolution of the reconstructed kinematics are listed here. The inability to
track and measure the precise time and space of the neutron’s reaction with the scintillating
material creates a relatively large uncertainty in the neutron’s kinematics when compared
to the electron.

Electron Neutron

quantity δ ∆ variable δ ∆

pe 0.037 GeV/c 0.004 GeV/c pn 8-25%6 2-10%7

θe 0.4◦ 0.1◦ δθn 1.5◦ 0.1◦

φe 0.3◦ 0.2◦ δφn 1.5◦ 0.2◦

angle between the outgoing proton and the momentum transfer, of which the convoluted

respective uncertainties are δpm/pm ≈ 2% and δθnp
cms ≈ 0.2◦. The asymmetries carry a

systematic error based on the uncertainties, δQ2, δpm, and δθnp
cms, and it can be denoted

by ∆Aexp(δQ
2, δpm) or ∆Aexp(δQ

2, δθnp
cms). The systematic errors from the lowest to the

highest bins of Q2 as well as the bins of the domain of the asymmetries will be correlated.

The quantification of errors for the asymmetries as a function of pm and θnp
cms are written

as ∆Apm
exp and ∆Aθ

exp, respectively and follow as such,

∆Apm
exp =

∆hPz

hPz
Apm

exp +
∂Apm

exp

∂pm
∆∗pm +

∂Apm
exp

∂Q2
∆∗Q2,

∆Aθ
exp =

∆hPz

hPz
Aθ

exp +
∂Aθ

exp

∂θnp
cms

∆∗θnp
cms +

∂Aθ
exp

∂Q2
∆∗Q2, (4.14)

where ∆∗ denotes the differential rather than a systematic error. The calculated values

for the derivative of the asymmetry with respect to the domain on which it is plotted is

a maximum within the first Q2 bin, while the change in the asymmetry as a function of

Q2 is quite small in the lowest bin and much larger in the highest bin where the effects

of the neutron’s magnetic dipole moment begin overwhelming the sensitivity to the charge

distribution. The relative balance between the terms serves to prevent any excessive change

in the calculated systematic uncertainty over the probed phase space of the experiment.

The uncertainty of the experimental asymmetry is dominated by the uncertainty in hPz

which is slightly less than 4% and contributes directly to the total systematic error in Aexp
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FIG. 4.25. Missing Mass cuts are varied in each of the four Q2 Bins from 50 to 300 MeV/c2

to determine the variation in the measurement of Gn
E in each bin. The final values plotted are

ratios of the resulting measurement with respect to the final values listed in the Combined
rows of Table 4.5.

which is about 5%. This error, ∆AV
ed, translates as a contribution to the systematic error

of the extracted value of Gn
E : ∆Gn

E(∆AV
ed) ≈ 1.5% as calculated from the Monte Carlo.

4.8.4. Cut Dependence. The cut dependence is assumed to be small. To elicit a

quantified demonstration of the effect cuts create on Gn
E , the width of the missing mass will

be narrowed and then dilated three times the actual width of the cut placed on the missing

mass. The difference in the measured value will serve well enough to quantify the effect of

the cuts on the actual value of Gn
E resulting from the analysis. The mean of the six points in

the four plots in figure 4.25. There is minimal variation after the first point corresponding

to the thinnest window of events allowed into the calculation. The contribution to the

systematic uncertainty is 1.5% corresponding to a fit for the mean of the six points in all

four bins from which the mean with the largest deviation from 1.0 was 0.986.
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4.8.5. Value of Gn
M . The kinematics of the experiment are restricted to the Q2

region from 0.1-0.6 (GeV/c)2. Within this region, the dipole parameterization of the form

factor Gn
M has been shown to deviate from measured values by up to 5%. A better pa-

rameterization is needed to extract the value of Gn
E from the measured form factor ratio

described in section 4.7.

Modern data on Gn
M ([19]-[32]) are well described by a recent paper by Friedrich and

Walcher[95]. In their paper, they are the first to parameterize the noticeable dip in the

world’s data of Gn
M (see Figure 2.3) in the Q2 region from 0.1-0.3 (GeV/C)2. They describe

their motivation as follows:

“...we show that, at the percentage level, the peculiar structure observed in

Gn
E , namely a kind of bump around Q2 0.2-0.3 (GeV/c)2, is also present in the

other form factors Gp
E , Gp

M , and Gn
M . . . . in terms of a purely

phenomenological ansatz for the form factors, we show how this can be viewed

in the light of the decomposition of the nucleon states into a constituent quark

core and a polarization term reflecting the contribution of the pion cloud.”

The parameterization describes a Gaussian dip along with a dipole form used to describe

the “inner” and “outer” charge distributions of the neutron. The mathematical form is

Gn
M =

aout
0

(1 + Q2/aout
1 )2

+
ain

0

(1 + Q2/ain
1 )2

+ aπ
0

(

1 − Q2

6aπ
1

)

e
− Q2

4aπ
1 (4.15)

The contribution to the systematic error in the determination of Gn
E is the uncertainty of

this fit to the world’s data. The error has been determined at about 1.5% and fluctuates

less than a tenth of a percent over the range of this experiment.

4.8.6. Radiative Corrections. The radiative effects on the cross section, though

considerable, are not spin-dependent and therefore, would not contribute significantly to the
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asymmetry AV
ed. Code developed by Afanasiev et al.[124] was used to analyze the depen-

dence of the vector polarized observable in perpendicular kinematics with the simulations

corrected and uncorrected for radiative effects with a maximum of 0.7% over the region of

momentum transfer within BLAST. Since the effect of the radiative corrections are shown

to be small, the corrections were not implemented into the analysis of the data.

4.8.7. False Asymmetries. Along with the asymmetries AV
ed and AT

d that are

expected to be significant and descriptive of spin-dependent components of the cross section,

other linear combinations of the spin-dependent yields such as Ae, AV
d , and AT

ed are expected

to be consistent with zero. Any significant deviations from zero would be demonstrative of

systematic errors in charge counting or averaging over the out of plane acceptance of the

detector. The uncertainties of these false asymmetries directly contribute to the systematic

error of the experiment.

Figure 4.26 shows the false asymmetries plotted as a function of the missing momen-

tum, one of the sensitive variables used in the Gn
E analysis from the 2 ~H(~e, e′n)p BLAST

data. The averaged values of the asymmetries here are as follows:

Ae = 2.899 × 10−3 ± 2.412 × 10−3

AV
d = −5.158 × 10−3 ± 2.388 × 10−3

AT
ed = −1.926 × 10−3 ± 2.434 × 10−3

These false asymmetries are determined over the sum of the entire Q2 region in question.

Their contribution to the systematic error is on the order of ∼ 1%.
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FIG. 4.26. The False Asymmetries as measured from the data used for the analysis of Gn
E .



CHAPTER 5: CONCLUSION

As experiments have become more sophisticated, the accuracy of the measurements

have significantly improved. The neutron is not the simplest elementary particle to detect

in the lab. Within this experiment, the number of protons detected through a very similar

analysis overshadows the overall neutron yield by more than an order of magnitude. This

difficulty in detecting neutrons is the reason that the currently measured values of Gn
M and

Gn
E are much less accurate than those of the proton.

The approximation of the proton being dominantly described by the s-state wave

functions of the two up and the one down quark, is different than that of the neutron in

which these contributions cancel at first order, i.e. the electric form factor of the neutron is

zero in this approximation. The gluons and sea quarks that are included in the constituent

quark picture are a new feature relative to the hypothesized pion cloud that was expected to

account for the Yukawa interaction between nucleons. The pion cloud is still realized to be an

essential feature in order to preserve chiral symmetry at low momentum transfers. Through

the development of nucleon models and hadronic interaction theories that evolved out of

Quantum Chromodynamics such as the MIT cloudy bag, chiral dynamics, chiral perturbation

theory as well as the effective theories spawned by Weinberg’s early efforts[128, 129, 130],

each has been forced to conform to the experimental tests that confirm that the pion is as

decisive a component of the nucleon as the constituent quarks and gluons.

Knowledge of the neutron’s electric form factor Gn
E is essential for the understand-

ing of the structure of the nucleon. It is also a key ingredient in the analysis of processes

involving electromagnetic interactions with complex nuclei as well as electroweak processes

involving interactions between leptons and hadrons and the developing field of neutrino

scattering. Unpolarized electron scattering on deuterium had been the experimental con-



169

figuration until Hartmuth Arenhövel cleverly demonstrated the unique opportunity to use

a polarized electron beam along with detection of the outgoing neutron’s polarization in

1987[126]. Polarizing a nuclear target also gives the ability to measure the same observ-

able as Arenhövel demonstrated, namely Px, which appeared to be directly proportional to

Gn
E and proved to be independent of the choice of the deuteron wavefunction, a problem

that still contorts the interpretation of unpolarized scattering from small nuclei. These ex-

periments have now been carried out several times and the results are shown in Figure 5.1.

The unpolarized data has been left out to ensure consistency in the comparison of the results

of this work.

5.1. Determination of the Final Points

Table 4.5 shows the results of the analysis at BLAST. Since the analysis was per-

formed by calculating asymmetries over two correlated but separate domains, the final

Gn
E points that are quoted are set to be consistent with the values quoted by the rest of

the scientific community. The calculations over the domain of missing momentum are thus

shown. The four final points along with the current world data from double-polarization

experiments can be seen in Figure 5.1.

5.1.1. Final Results and Phenomenological Fits. In the early 1970’s, Galster

et al. introduced the first phenomenological parameterization of Gn
E [53] (see eq. 2.55). The

neutron’s magnetic moment was fixed as the constant in the numerator, i.e. aG = −µn, and

the free parameter in the denominator was found to best fit the 1973 unpolarized ed-elastic

data with a value bG = 5.6. In the Platchkov parameterization[54] the parameters aP = 0.9

and bP = 3.47. Both of these parameterizations were fitted to unpolarized data that used
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FIG. 5.1. The World’s double-polarized data on Gn
E is included with the results from this experiment. Statistical errors are

displayed. Bermuth [85], Zhu [94], and Rohe [92] are data taken with a 3He target while all other points applied the use of
deuterium. A fit of the data to the Platchkov parameterization is plotted and shows relative consistency at low Q2 while poorly
accommodating the behavior of the data at highest Q2 point. The original parameterization presented by Friedrich and Walcher
in 2003 [95] has been plotted. This fit satisfies the behavior of the world’s data well but fails to fit the constraint of the slope at
Q2 = 0. The BLAST parameterization is shown and is constrained to fit the slope constraint. It displays the behavior of Gn

E just
as well as the new Friedrich and Walcher fit discussed in this section.
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the unpolarized electron-deuteron scattering cross section as noted in eq. 2.31. A fit to the

new polarized data using the Galster form from eq. 2.55 is shown. It is plotted with the

World’s data in Figure 5.1 and is quite consistent with the data up to the highest Q2 point

measured which is underestimated by this rigid parameterization by almost 2σ.

In 2003, Friedrich and Walcher published a paper on phenomenological fits to the

electromagnetic form factors of the proton and neutron[95]. The appearance of a bump

in all four electric and magnetic form factors of the proton and neutron in the same Q2

region prompted them to parameterize the anomaly and postulate the measurements as

indicative of a pion cloud. When subtracting the smooth ansatz fits from the data along

with their data driven parameterization including this bump contribution, it was noticed

that the four form factors demonstrated a bump structure that is strikingly similar in width

and magnitude in all four form factors Gp
E , Gp

M/µp, Gn
E , and Gn

M/µn. Gn
E happened to be

the impetus under which their phenomenological ansatz was motivated since the bump

contribution is the greatest in the neutron. Their parameterization of Gn
E is described in

section 2.4.2. The Mainz A1 collaboration[87] used this parameterization to better fit the

low and high Q2 of the world’s data. Though the fit does remarkably well, it is demonstrated

that this parameterization also falls short of physical constraints, i.e.
dGn

E
dQ2 |Q2=0 6= −1

6〈r2
n〉,

where 〈r2
n〉 is the neutron’s charge radius. For this reason, the BLAST parameterization

was introduced[107] and is reasserted here.

The neutron’s charge radius has been measured very accurately[65] and must be used

to constrain the fit to the world’s data. The BLAST parameterization is written exactly

the same as the Friedrich and Walcher parameterization is written in equation 2.56. To
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reiterate, the equation is written here:

Gn
E(Q2) =

a10
(

1 + Q2

a11

)2 +
a20

(

1 + Q2

a21

)2 + abQ
2



e
− 1

2

(

Q−Qb
σb

)2

+ e
− 1

2

(

Q+Qb
σb

)2


 . (5.1)

As with the Friedrich and Walcher fit, the parameterization consists of two dipole terms

normalized to ensure that Gn
E → 0 as Q2 → 0. The bump contribution is characterized by

the addition of two Gaussians. This is necessary to symmetrize the first order Q terms in

the exponent. The term Qb within the exponents determine the position of the bump and is,

like Q, positive definite. Friedrich and Walcher postulate that the bump term, characterized

by the Gaussians, is the contribution of the pion cloud while the smooth dipole terms are

indicative of the constituent quark core. The original fit by the A1 collaboration is included

in Figure 5.1. A newer fit includes the data in this work and has the fitted parameters

shown in Table 5.1. It has not been shown in the figure since its position is so near to the

BLAST parameterization that it is left out for clarity. Both A1 fits match the world’s data

considerably better than the Galster and Platchkov parameterizations and demonstrate

significantly better χ2 (see Table 5.1).

The Friedrich and Walcher parameterization is highly successful in predicting the

low Q2 behavior and the high Q2 data recently measured at Jefferson Lab Hall C[89]. Yet,

as alluded to earlier, it is unphysical in that it fails to reproduce the correct slope as Q2 → 0.

In order to restrict the parameterization to match the charge radius measured by Kopecki

et al.[65], the following equation must be used to force the parameterization to satisfy the

physical constraint,

−1

6
〈r2

n〉 =
dGn

E

dQ2

∣

∣

∣

∣

Q2=0

= −2

(

a10

a11
+

a20

a21

)

+ 2abe
− Q2

b
2σ2

b . (5.2)

According to this formula, the bump term dominates the contribution to the charge radius.

Separate curves are drawn in Figure 5.1 to denote the separate contributions of the bump
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TABLE 5.1. Comparison between fits to the World’s data on Gn
E are shown here. The

errors of the last significant digits are quoted in the parentheses. Calculated χ2 includes all
points in Figure 5.1.

Fit a10 a11 a20 a21 ab Qb σb 〈r2
n〉 χ2

total

(GeV/c)2 (GeV/c)2 (GeV/c)−2 (GeV/c) (GeV/c) fm2

A1[95] 1.2974 1.73(fixed) -1.2974(fixed) 1.5479 0.19426 0.3421 0.16758 -0.052 8.43

new A1 1.289(1.1) 1.73(fixed) -1.289(fixed) 1.544(8.1) 0.18(2.2) 0.29(2.0) 0.21(1.2) -0.073 5.91

BLAST 2.03(3.4) 1.73(fixed) -2.03(fixed) 1.6114(2.8) 0.220(fixed) 0.19(1.4) 0.246(4.9) -0.115 6.06

and dipole terms in this parameterization. Table 5.1 gives the values of the parameters of

the best fit to the World’s data. The Friedrich and Walcher fit is shown as given by the A1

collaboration in 2003 and a newer fit that includes the data from this thesis. The newer fit

shows the best χ2 but, again, is unphysical. It is only marginally better than the BLAST fit

while the BLAST fit models the physical constraints correctly. The old A1 fit has a nearly

identical dipole contribution to the newer fit and the BLAST fit but the bump contribution

is substantially different between all three fits. The width of the bump is much larger in

the two new fits, largest in the BLAST fit, and the location of the bump is much lower

in Q2 in the BLAST fit than the new A1 fit. The BLAST parameterization also displays

the largest amplitude of the bump contribution as demonstrated by ab. Considering that

the dipole contribution at Q2 = 0 is only about 30%, this translates to the charge radius

being predominantly determined by the pion cloud. As predicted by pQCD calculations,

the constituent quark core is expected to dominate in the high Q2 region and this is also

demonstrated by exponential decay of the bump contribution beyond Q2 ∼ 0.8(GeV/c)2 .

Figure 5.1 shows the separate contributions of the bump and dipole terms to the BLAST

parameterization.

The data from this particular experiment demonstrate remarkable consistency with

the fits. The first two points lie less than half of one standard deviation from the fits, while

the third point seems to balance on the exact placement of the maximum of the fits as if
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FIG. 5.2. The region of the bump from Figure 5.1 is zoomed on the top left showing the
substantial differences between the best fit parameterizations of Gn

E and the uncertainty
of the data points that make up this interesting region. The thinnest line is the new A1
fit whose parameters are listed in Table 5.1. It was not shown in previous figures due to
its proximity to the BLAST fit. On the right is the BLAST parameterization along with
its respective error band. The uncertainty is about 6% in the region of the parameterized
bump and surfs slightly above 3% in the high Q2 region. Note that in this work, the world’s
data and the respective statistical errors are fitted.

Sisyphus had placed it there. The fourth point drops substantially, hinting at the necessity

of a parameterized “bump” while still showing that it, too, lies less than one standard

deviation from the fits to the World’s data. Despite the fact that the first point in this

analysis is the world’s lowest Q2 point in the measurement of Gn
E , it is obvious that more

low Q2 data is needed to better isolate the behavior and the expected contribution of the

pion cloud. Figure 5.2(left) gives a close-up view of the deviations between the presented

fits and parameterizations along with the significant uncertainty within the data that still

plays a heavy role in the uncertainty of the behavior of Gn
E . On the right side of Figure 5.2

is a plot of the BLAST parameterization, the respective contributions of the dipole and

bump terms, and an error band demonstrating the region of the bump in Gn
E to carry the
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FIG. 5.3. The precision of the BLAST fit, ∆Gn
E/Gn

E .

highest respective uncertainty. With the data from this work, the best fit allows us to

determine Gn
E with an uncertainty of 5.8% at the highest point in the fit where the dipole

and bump contributions cross. This demonstrates a need for more data in this region near

Q2 ≈ 0.3(GeV/c)2 . In the high Q2 region, the accuracy of the dipole contribution results

in approximately a 3% uncertainty (see Figure 5.3). Though there is still much progress to

be made, the present picture of the neutron’s electric form factor is considerably clearer.

5.1.2. Charge Density of the Neutron. The interpretation of Gn
E requires a

relativistic transformation and is not as simple as a charge distribution with the neutron at

rest. The motivation behind the Rosenbluth separation was to present a “non-relativistic”

model in which the Fourier transform of the electromagnetic form factors could be quantita-

tively depicted as a charge distribution within the Breit frame. More complex relationships

have been discussed within a relativistic framework and corrections such as these require

model assumptions[127] but these are not considered here. Also ignored is the controversy

over this simplistic interpretation which is discussed thoroughly in [131]. The Fourier trans-
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FIG. 5.4. The Fourier transform of the BLAST parameterization along with the respective
charge distribution as it would be described by the Galster parameterization. There is a
significant change between the models as can be noticed by the difference in the density of
the positive core and with the broadness of the negative cloud in the outer region of the
neutron. The error band has also been carried through the Fourier transform and can be
seen in the right figure.

form of the BLAST parameterization presented here has been depicted in Figure 5.4 along

with the Fourier transform of the Galster parameterization. It is generally assumed that

the up and down quarks within the constituent quark picture are not evenly dispersed, but

rather the up quark with its charge of +2
3 tends to situate itself closer to the center of the

neutron while the down quarks are pushed further out resulting in the more negative outer

region of the neutron and the resultant negative charge radius.

The Fourier transform of the Galster parameterization shows the general charac-

teristics that one might expect from this simple constituent quark interpretation, yet its

inability to reproduce the behavior of the world’s data forces a new interpretation. The

Fourier transform of the A1 fit and the BLAST fit sheds an interesting light on the neutron

in the sense that it increases the density of the positive core of the neutron and broadens
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the negative region in the outer region of the neutron. There is a slightly positive region

extending beyond the negative cloud and this is indicative of the nearly complete cancella-

tion of the positive core and the diffuse negative pion cloud. The Q-space bump structure

contributes a change in the r-space charge density, ∆ρb, which must sum to zero by its con-

struction and thus must contribute to an oscillatory behavior in the charge density as can

be seen in Figure 5.4. The wavelength of this oscillation λρ is determined by the position

of the bump in Q-space while the dampening of the oscillation is determined by the width

of the bump. The width of the bump results in a wavelength λrho = 2πh̄/Qb ≈ 2.4fm, and

such an oscillation, in accordance with the results from Friedrich and Walcher, results as a

common feature of all four form factors.

5.1.3. Model-Independent Sum of Gaussians Parameterization. One more

fit has been included to elucidate the world’s current data on Gn
E . A model-independent fit

has been included using the Sum of Gaussians (SOG) method used by Sick in 1974 [139].

The methodology is to add a series of gaussians to approximate a fit to the world’s data.

The electric and magnetic form factors and the charge and magnetization densities of

the neutron can be related by a Fourier transform. The charge density must be normalized

to
∫ ∞

0
drr2ρch(r) = Z (5.3)

while the magnetization density is normalized as

∫ ∞

0
drr2ρm(r) = 1. (5.4)

The electric form factor as we have written it can also be generally parameterized by a

series of gaussians

Gn
E(Q2) =

N
∑

n

ane
(q−Qn)2

γ2 (5.5)
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where an is the coefficient of the nth Gaussian, Qn is the radius of the nth gaussian term

and γ is representative of the width. The FWHM is commonly quoted as the definition of

the smallest structure within the form factor’s distribution and is mathematically defined

in terms of the width of the gaussian as

Γ = 2γ
√

ln 2 = FWHM. (5.6)

The parameterization is also model-independent since the only parameter that is

input is the width of the gaussians. The width used in the parameterization here comes

from the 2004 Friedrich and Walcher (A1) fit since it was fit to actual data and yields the

thinnest width to a structure that Friedrich and Walcher define as the bump contribution.

The widths of the corresponding gaussians in q and r-space are related and can be defined

as the relationship between the rms radius RG of the r-space gaussian and the FWHM of

the q-space gaussian,

RG = Γ

(

3 ln 2

8

)
1
2

(5.7)

The number of terms N from equation 5.5 is unimportant. The important strategy is to fit a

small number of gaussians from the outer limits of the region in question and to increase the

number of gaussians until the fit is good and stable using a minimum χ2. Restrictions can

obviously be made on the height of each gaussian which should be limited by the maximum

q-space density. The width need be restricted as well since instability quickly arises once

widths smaller than the smallest noticeable structure are included. This width remains a

constant feature of each gaussian within the parameterization to limit the number of free

parameters.

A fit using the SOG method is shown in Figure 5.5. Three gaussians were all that

was needed to describe the data. The error band is much more realistic than the previous
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FIG. 5.5. A Sum of Gaussians parameterization is fit to the World’s data on Gn
E . The final

point circled is a fiducial point added to stabilize the fit of the third gaussian which would
asymptotically deviate from the behavior of the other form factors due to the slight increase
of Gn

E over the highest two points in Q2.

parameterizations since they are constrained by the form of the equations used in the fits.

The resultant χ2 of the fit is 5.45. It makes little sense to plot any higher in Q2 than what

is shown here since there is no data published in a higher range. The analyzed data from

Jefferson Lab’s E02-013 experiment is highly anticipated.

5.1.4. Theoretical Revisit. The subject of theoretical models is difficult to an-

alyze in concise terms. The development of QCD has been worked on extensively and

the number and applicability of models are as diverse as the philosophical interpretations

of Quantum Mechanics. The types of models applicable to the study of the electromag-

netic form factors of the proton and neutron are described in section 2.5. Available model

predictions are plotted alongside the world’s data in Figure 5.7.

The purpose of this work is present a new measurement and the behavior with re-

spect to theory will be terse and qualitative. Not one of the theoretical models is capable of
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FIG. 5.6. The world’s double-polarized scattering data on Gn
E and the prediction from

Dispersion Theory as taken from [142]. The theory shows the best description of the world’s
Gn

E data.

describing the low and high Q2 behavior of the form factor ratio. The Light Front calcula-

tions by Miller[75] and those by Cardarelli and Simula[135] are very successful in predicting

the behavior of the dipole contribution at high Q2 and even resemble a smooth dipole pa-

rameterization. Since it resembles a dipole term, it is far too rigid to accommodate the

distinguishable bump contribution at low Q2. In opposition, the Kaskulav calculation[134],

the Diquark model[132], and the chiral soliton calculation[77] all reproduce the amplitude

and general behavior below Q2 = 0.3(GeV/c)2 but deviate significantly from the high Q2

behavior. The best fit to the behavior of the data comes from [142]. It builds upon Dis-

persion theory and the constraints of Chiral Perturbation Theory to sufficiently model the

assertion of the pion cloud about the nucleon. It is plotted separately from the other theo-

ries since it demonstrates a superior ability to exhibit the behavior of the world’s Gn
E data

(see Figure 5.6) at both low and high Q2.



181

FIG. 5.7. Comparison of the data on µnGn
E/Gn

M in reference to theoretical calculations.
The “Diquark” model comes from Ma et al.[132], “Miller CB” is a Cloudy Bag model from
G. Miller[75] using a One-Gluon-Exchange potential in a core nucleon, “Lomon GK” is
an extended Gari-Krümpelmann calculation by E. Lomon[133], the “χ Soliton” calcula-
tion comes from Holzwarth[77], “Kaskulov” is a relativistic constituent quark One-Gluon-
Exchange model with a pion cloud[134], “C & S” is a Light-Front description with One-
Gluon-Exchange calculated by Cardarelli and Simula[135], “WB” is a point-form spectator
approximation based on Goldstone-Boson-Exchange by Wagenbrunn et al.[136]. The data
are from [85, 86, 84, 87, 88, 89, 90, 91, 92, 93, 94].
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5.2. Summary

This work presents the measurement of Gn
E at four-momentum transfers of 0.14,

0.20, 0.29, and 0.41 (GeV/c)2. The calculated values of Gn
E at the respective values of

four-momentum transfer are 0.0406 ± 0.0055 ± 0.0024, 0.0476 ± 0.0056 ± 0.0028, 0.0558 ±

0.0070 ± 0.0032, and 0.0477 ± 0.0079 ± 0.0028. The first point is lowest four-momentum

transfer at which the value of Gn
E has been analyzed.

The production runs took place at MIT-Bates Linear Accelerator Center in Middle-

ton, MA from the summer of 2004 until late Spring of 2005. The measurement employed

the use of a linearly accelerated polarized electron beam at an energy of 850 MeV. This

beam was incident upon a monatomic deuterium target that was cycled through states of

vector-plus, vector-minus, and tensor polarization oriented at angles of approximately 32◦

and 47◦ into the left sector of a symmetrical large acceptance spectrometer. This target is a

modified Atomic Beam Source transported to Bates from NIKHEF. The spectrometer was

placed into a toroidal field allowing for charge discrimination and kinematic reconstruction

of the scattered particles exiting the target cell. Scintillating detectors were used to trigger

the detection of electrons while lead glass detectors were used for the detection of coincident

neutrons.

The data has shown to be consistent with the World’s data on the electric form factor

of the neutron. The Friedrich and Walcher (A1) parameterization was modified to constrain

the slope at zero momentum transfer to be consistent with the world’s best measurement of

the charge radius of the neutron. The uncertainty of the fit of this parameterization shows a

maximum uncertainty of 5.8% within the highest region of Gn
E and an uncertainty of only 3%

in the higher region of momentum transfer. The data disagrees with the theoretical models
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presently available. The low momentum transfer points are expected to significantly enhance

the current precision of the strange form factor, and the precision of the phenomenological

fit is expected to greatly enhance the precision of parity violation experiments which directly

contribute to the neutral weak form factors.



APPENDIX A

KINEMATIC CALCULATIONS

Two Lorentz frames are relevant to the BLAST calculations for the reaction of

e + d → e + p + n: 1. the lab frame in which we do the experiment (this includes a simple

rotation into the momentum transfer frame), and 2. the center-of-momentum frame (which

is sometimes referred to as the center of mass frame). The reactions at BLAST can be

quantified within these coordinate systems with relative ease.

A.1. BLAST Lab Frame Coordinate System

These variables are defined in the BLAST coordinate system in the Lab frame unless

otherwise noted by a superscript suggesting a rotation or a boost. This BLAST coordinate

system in the lab frame is defined as the frame in which the deuteron has zero momentum

and the electron’s momentum is 850 MeV and in the direction of the electron beam flow,

+zB . These cartesian axes are given a B superscript to denote that they define the BLAST

coordinate system in the lab frame. The masses of the particles intrinsic to the experiment

are defined as me,md,mn, and mp, corresponding to the electron, deuteron, neutron, and

proton respectively. The binding energy is far below the resolution of the experiment and

will be included as Eb for pedagogy.

+ẑB ≡ Points in the direction of electron beam’s momentum in the BLAST

Coordinate System

+ŷB ≡ Points directly upward towards the ceiling of the South Hall in the

BLAST Coordinate System
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+x̂B ≡ Points in the remaining direction so to create a right-handed coordi-

nate system as defined by: x̂L ≡ ŷL × ẑL, in the BLAST Coordinate

System

θe ≡ The polar angle of the outgoing electron in the BLAST Coordinate

System

φe ≡ The azimuthal angle of the outgoing electron in the BLAST Coordi-

nate System

Ωe ≡ The solid angle of the outgoing electron in the BLAST Coordinate

System

E0 ≡ The energy of the incoming electron beam

Ee ≡ The energy of the outgoing scattered electron

~ke ≡ The momentum of the incoming scattered electron in the BLAST

Coordinate System

~k′
e ≡ The momentum of the outgoing scattered electron in the BLAST

Coordinate System

θn ≡ The polar angle of the outgoing scattered neutron in the BLAST

Coordinate System

φn ≡ The azimuthal angle of the outgoing scattered neutron in the BLAST

Coordinate System

Ωn ≡ The solid angle of the outgoing scattered neutron in the BLAST

Coordinate System

En ≡ The energy of the outgoing scattered neutron

~pn ≡ The momentum of the outgoing scattered proton in the BLAST Co-

ordinate System
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θp ≡ The polar angle of the outgoing scattered proton in the BLAST Co-

ordinate System

φp ≡ The azimuthal angle of the outgoing scattered proton in the BLAST

Coordinate System

Ωp ≡ The solid angle of the outgoing scattered proton in the BLAST Co-

ordinate System

Ep ≡ The energy of the outgoing scattered proton

~pp ≡ The momentum of the outgoing scattered proton in the BLAST Co-

ordinate System

~q ≡ The momentum of the virtual photon or momentum transfer in the

BLAST Coordinate System

θq ≡ The polar angle of the virtual photon or momentum transfer in the

BLAST Coordinate System

φq ≡ The azimuthal angle of the virtual photon or momentum transfer in

the BLAST Coordinate System

Q ≡ The four-momentum of the virtual photon

From these variables we construct the necessary relations that define our reaction.

The relations that do not require a rotation or a boost are few and defined here.

The energy transfer ω = E0−Ee and the four-momentum transfer which is a Lorentz

invariant:

Q2 = 4E0E
′ sin2

(

θe

2

)

= ~q2 − ω2, (A.1)

allows us to calculate the magnitude of the three momentum transfer as can be seen the

second part of this equation. Then to calculate polar and azimuthal angles of the virtual



187

photon in the BLAST Coordinate system,

cos θq =
E0 − Ee cos θe

q
, (A.2)

φq = φe + π. (A.3)

The complete four-momentum transfer is now known and a rotation into the direction of

the momentum transfer along with a boost to the center of momentum is possible. First,

there are a few useful relations that help to identify the characteristics of the reaction.

The invariant mass W is useful in kinematic cuts. It can be considered the total

system energy that the electron scatters from divided by c2. It is defined as such,

W =
√

m2
d + 2mdω − Q2. (A.4)

Continuing with useful relations for the identification of the deuteron electrodisintegration

reaction, we can calculate the missing energy Em, the missing momentum pm, and the

missing mass Mm,

Em = md + ω − En − Eb,

~pm = ~q − ~pn,

Mm =
√

E2
m − p2

m.

(A.5)

A.2. Rotations within Lab Frame

The two rotations that need to be considered are the rotation from the BLAST

Coordinate system, B, into the Coordinate system in which the z-axis is pointed along the

direction of the momentum transfer Q, i.e. +ẑL →+ẑQ.

The mathematical definition of a rotation is defined by a rotation matrix R which

takes one three-dimensional vector in the B-system to one in the Q-system. It can be



188

written as such,


















pQ
x

pQ
y

pQ
z



















= R



















pB
x

pB
y

pB
z



















. (A.6)

The general equation for a momentum vector in the B-system with energy EB is written

here in cartesian and spherical coordinates,

~pB = pB
x x̂B + pB

y ŷB + pB
z ẑB

= pB(sin θB
p cos φB

p x̂B + sin θB
p sin φB

p ŷB + cos θB
p ẑB).

(A.7)

Analogously, we can write the vector in the Q-system,

~pQ = pQ
x x̂Q + pQ

y ŷQ + pQ
z ẑQ

= pQ(sin θQ
p cos φQ

p x̂Q + sin θQ
p sin φQ

p ŷQ + cos θQ
p ẑQ).

(A.8)

The vector which defines our rotation is the momentum transfer ~qB which is given the

B superscript to denote that we calculate it within the BLAST coordinate system. It is

written in an identical form to ~pB,

~qB = qB
x x̂B + qB

y ŷB + qB
z ẑB

= qB(sin θB
q cos φB

q x̂B + sin θB
q sin φB

q ŷB + cos θB
q ẑB).

(A.9)

By definition, ẑQ ≡ ~qB/|qB |, and thus the definition of ẑQ is inside the parentheses of

eq. A.9. The definition of a three-dimensional rotation allows us to demonstrate that ŷQ =

k̂B
e × k̂′B

e = ẑQ × ẑB , and so we can then show:

ŷQ = sin φB
q x̂B − cos φB

q ŷB. (A.10)

The final axis is simply the cross product, x̂Q = ŷQ × ẑQ. In matrix form we can rewrite R
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from eq. A.6,

R =



















− cos θB
q cos φB

q − cos θB
q sinφB

q sin θB
q

sin φB
q − cos φB

q 0

sin θB
q cos φB

q sin θB
q sinφB

q cos θB
q



















(A.11)

In order to boost in the center-of-momentum frame with less ambiguity, the transformations

of the polar and azimuthal angles in spherical coordinates is much more useful. Using the

results of our rotation on the vector ~p,

cos θQ
p = ~pQ·ẑQ

|~pQ|

= cos θB
p cos θB

q + sin θB
p sin θB

q cos(φB
q − φB

p )

tan φQ
p =

pQ
y

pQ
x

=
sinθB

p sin(φB
q −φB

p )

cos θB
p sin θB

q −sin θB
p cos θB

q cos(φB
q −φB

p )

(A.12)

Since the transformation has not left the rest frame, we know that the energy and the

magnitude of the three momentum in the Q-system is equal to that of the B-system, i.e.

EQ = EB and |~pQ = pQ = pB = ~pB. To go backwards from ~pQ → ~pB , one need only use

the inverse of the R matrix, or even simpler, to use the property of orthogonal matrices

which states that the transpose is the inverse and carry out the same general rotation.

We are now ready to boost into the center-of-momentum frame.

A.3. Boosts to CM-Frame

The boost that will be carried out is along the direction of the momentum transfer.

Since the deuteron was at rest and then experienced a momentum transfer along the ẑQ

direction equal to q, we must boost the system into that frame. Using a Lorentz boost, our

final frame will consist of the neutron and proton moving away from each other at an angle
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of exactly 180◦ with equal momentum. We will be boosting from the lab coordinate system

defined as the Q-system in the previous section into the center-of-momentum system, the

C-system which will be denoted by the superscript C. The Lorentz boost is defined as,



























EC

pC
x

pC
y

pC
z



























=



























γ 0 0 −γβ

0 1 0 0

0 0 1 0

−γβ 0 0 γ





















































EQ

pQ
x

pQ
y

pQ
z



























. (A.13)

The definitions for γ and β are as follows and can be determined solely from variables that

come from the lab system and do not require any such transformations,

β =
|~qB|

ω + md
(A.14)

γ =
ω + md

√

(ω + md)2 − (~qB)2
(A.15)

These equations define the Lorentz boost and allow us to transform our coordinate system

into the center of momentum system! To go backwards, one need only take the inverse of

the matrix defining the Lorentz transform which simple changes the signs of the non-zero

off-diagonal elements. A quicker method by which to decipher the polar and azimuthal

angles of the spherical coordinate system in the boosted C-system, is to adapt eq. A.12 for

this transformation by substituting it into the bottom row of eq. A.13, i.e.

cos θC
p =

γ

pC
(pB cos θQ

p − βEB) (A.16)

where:

(pC)2 = (pB sin θQ
p )2 + γ2(pB cos θQ

p − βEB). (A.17)

Since the azimuthal angle is perpendicular to the direction of the boost, φC
p = φQ

p . It is

in this frame that the other important kinematic variable θnp
cms is defined. It is the angle
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between the outgoing proton and the momentum transfer, i.e.

cos θnp
cms = π − ~pC · ẑC

pC
. (A.18)



APPENDIX B

EQUATIONS FOR KINEMATIC CORRECTIONS

B.1. ep-Elastic Kinematics

The corrections for the reconstructed momentum and polar angles of the electron

come from the physics of relativistic elastic collisions. The calculations shown here are

specific to the BLAST lab frame and the convenient convention h̄ = c = 1. Ideal kinematics

constrains the reaction to be coplanar and the resultant equations are solely functions of the

incident beam energy (E0), the outgoing electron momentum (pe
1) and its polar angle (θe),

the mass of the proton (mp) and the outgoing momentum and polar angle of the proton

(pp and θp). The results allow us to calculate the outgoing momentum or polar angle as a

function of the initial energy of the system and any other ougoing polar angle or momentum,

e.g. θp = f(E0,mp, θe) or pe = f(E0,mp, θp).

A simple result to obtain pe(pp) and its inverse comes directly from energy conser-

vation, i.e.

E0 + mp = pe +
√

p2
p + m2

p (B.1)

→ pe =
√

p2
p + m2

p − (E0 + mp) (B.2)

→ pp =
√

(E0 + mp − pe)2 − m2
p (B.3)

These two equations can now serve as substitutions in later results.

The simplest way to begin the more complex derivations of these first-order relation-

ships is to use the four-momenta Pe, P
′
e, Pp, and P ′

p which are four-momenta of the incoming

1The momentum of the outgoing electron can be considered to be equal to the final energy of the electron
since it is ultra-relativistic.
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and outgoing electron and the incoming and outgoing proton, respectively. To enumerate,

Pe = (E0, E0ẑ)

P ′
e = (Ee = pe, ~pe)

Pp = (mp, 0)

P ′
p = (Ep =

√

p2
p + m2

p, ~pp)

(B.4)

Energy and momentum conservation give,

Pe + Pp = P ′
e + P ′

p (B.5)

These can be rearranged to make a set of two equations:

Pe + Pp − P ′
e = P ′

p (B.6)

Pe + Pp − P ′
p = P ′

e (B.7)

We square these and use the Minkowski inner product to obtain, respectively,

m2
e + PeP

p − PeP
′e − P ′

eP
p = 0 (B.8)

m2
p + PeP

p − PeP
′p − PpP

′p = 0 (B.9)

where the masses on both sides of the equation have cancelled and a factor of 2 has been

divided out. The mass of the electron is more than 3 orders of magnitude smaller than

the energies we are calculating and can be neglected. The terms will now be calculated

individually,

PeP
′e = E0pe − E0pe cos θe (B.10)

PpP
′p = mpEp = mp

√

p2
p + m2

p (B.11)

PeP
p = E0mp (B.12)

P ′
pP

e = E0mp − E0pp cos θp. (B.13)

PeP
′p = E0 ∗

√

p2
p + m2

p − E0pp cos θp (B.14)
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From eq. B.8, the terms allow us to calculate the momentum of the electron as a function

of its outgoing angle, i.e.

pe =
E0mp

mp + E0(1 − cos θe)
(B.15)

This equation can be easily inverted to give θe(pe). From this equation and eq. B.2 and

B.3, we can easily derive θe(pp) and pp(θe). Lastly, the second equation, B.9 is rewritten as,

0 = m2
p + E0mp + E0pp cos θp − (E0 + mp)

√

p2
p + m2

p (B.16)

→ pp =
2mp(E0 + mp)

E0 cos θp

[

(

E0+mp

E0 cos θp

)2
− 1

] , (B.17)

→ cos θp =
(E0 + mp)(sqrt(p

2
p + m2

p) − mp)

E0pp
(B.18)

These equations obviously give us the last remaining piece of the puzzle. Since we have

pp(θp), pe(θe), pe(pp) and their inverses, it is mere substitution and some hefty algebra to

pull out the last relations between θe and θp. As a token of love, one of the relations has

been included here:

cos θp =

(E0 + mp) ∗
(

√

(

mp + E0 − E0mp

mp+E0−E0∗cos θe

)2
− mp

)

E0

√

(

mp + E0 − E0mp

mp+E0−E0∗cos θe

)2
− m2

p

(B.19)
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[14] G. Höhler, Nuclear Physics B 114, 505 (1976)

[15] G. G. Simon, C. Schmitt, F. Borkowski, and V. H. Walther, Absolute electron proton
cross-sections at low momentum transfer measured with a high pressure gas target
system., Nuclear Physics A 333, 381 (1980)



196

[16] A. F. Sill et al., Measurements of elastic electron-proton scattering at large momentum
transfer. The Physical Review D 48, 29 (1993)

[17] L. Andivahis et al., Measurements of the electric and magnetic form-factors of the
proton from Q2 = 1.75 (GeV/c)2 to 8.83 (GeV/c)2. The Physical Review D 50, 5491
(1994)

[18] R. C. Walker et al., Measurements of the proton elastic form-factors for 1 (GeV/c)2 ≤
Q2 ≤ 3 (GeV/c)2 at SLAC. Physical Review D 49, 5671 (1994)

[19] W. Bartel et al., Phyics Letters 39B, 407 (1972)

[20] S.Rock et al., Physical Review Letters 49, 1139 (1982)

[21] R.G.Arnold et al., Physical Review Letters 61, 806 (1988)

[22] A.Lung et al., Physical Review Letters 70, 718 (1993)

[23] P.Markowitz et al., Physical Review C 48, R5 (1993)

[24] H.Anklin et al., Physics Letters B 336, 313 (1994)

[25] H.Gao et al., Physical Review C 50, R546 (1994)

[26] E.E.W.Bruins et al., Physical Review Letters 75, 21 (1995)

[27] G.Kubon et al., Physics Letters B 524, 26 (2002)

[28] J.Jourdan et al., Physical Review Letters 79, 5186 (1997)

[29] H.Anklin et al., Physics Letters B 428, 248 (1998)

[30] W.Xu et al., Physical Review Letters 85, 2900 (2000)

[31] W.Xu et al., Physical Review C 67, R012201 (2003)

[32] N. Meitanis, A Measurement of the Neutron Magnetic Form Factor Gn
M from Quasi-

elastic 2~H(~e, e′) at low Q2, Ph.D. thesis, MIT (2006)

[33] T.W. Donnelly and A.S. Raskin, Annals of Physics 169, 247 (1986)



197

[34] A.S. Raskin and T.W. Donnelly, Annals of Physics 91, 78 (1989)
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